Edexcel Maths D1

Mark Scheme Pack

2001-2015

PhysicsAndMathsTutor.com

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject DECISION MATHEMATICS 6689

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject DECISION MATHEMATICS 6689

Question number	Scheme	Marks
(2.)	(a) As there are 11 names in the list the middle location to $[\frac{1}{2}(11+1)] = 6$ is JONES Comparison 1: HUSSAIN occurs before JONES So list 2 is 1. ALLEN, 2. BALL, 3. COOPER 4. EVANS, 5 HUSSAIN.	MIAI
	niddle is now $\begin{bmatrix} 1 \\ 2 \\ (1+5) \end{bmatrix} = 3$ is COOPER Comparison 2: HUSSAIN occurs after COOPER so list 3 is 4. EVANS, 5 HUSSAIN middle is now $\begin{bmatrix} 1 \\ 2 \\ (4+5) \end{bmatrix} = 5$ Companson 3 HUSSAIN has been found af Doore tion 5	MIAI AI (6)
5	(b) Mariman number of comparisons with a list of 11 names is 4	B I cac (1)

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject DECISION MATHEMATICS 6689

Ouestion Scheme number Marks (a) verter (3) B B C D F F Valency 3 2 4 3 3 3 Odd vertices are A, D, E and F. Blaco Possible pairings Shortest routes Total (A, F) and (D, E) AF + DE 150 (60) + (90) 150* (A, E) and (D, F) AFGE + DGF (170) + (70) 240 MIAI (A, D) and (E, F) ACD & EGF 2 30 (120) +(110) So repeat AF and DE A IV Possible route AFEDEGDCBACGFA ₽Ⅰ♪ (5) (b) Tutal length of this roule = Total weight of edges +150 = 690 + 150 = \$40 m MI ₽∣♪ (2) 7

January 2001

ŗ

4

.

...

J.

Advanced Supplementary/Advanced Level

General Certificate of Education

Subjec	ct DECISION MATHEMATICS 6689	Paper No. D1
(4)	(a) A Monday (M)	MARKS.
	B Tuesday (Tu)	
	C Wednesday (W)	
	D Thursday (Th)	BI
	E Friday (F)	B 1 (2)
	(b) $C - M = A - W = B - F$ (break through)	
	changing status C = M - A = W - B - F	MIA).
-	Matching now $D = Th, C = M, A = W, B = F$	A1 (3)
\bigcirc	(c) $E - Th = D - Tu$	
	Changing status	
	E = Th - D = Tu	MIAI
	So complete matching is	
	A = W, $B = F$, $C = M$, $D = Tu$, $E = Td$	(J) (3)
		8

N9117

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject DECISION MATHEMATICS 6689

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Paper No. D1

Subject DECISION MATHEMATICS 6689

Question Marks Scheme number (7) (a) Catton 1.x + 2y 5 70 (available) Wool 3x + 2y 5 90 (available) Non negativity x >0, y >0.
(b) Income € P whene P = 30x + 40y Objective to maximize P Adding stack variables r and s Sc + 2y + r = 70 3x + 2y + S = 90 So initial tablean is 31 BI (2) MI Value. Basic Var 5 Y x 70 AI a) 0 t 1 90 ł 3 2 0 S A | (3) -40 0 0 0 -30 ρ O values row 1: 70/2 = 35 row 2: 90/2 = 45 So miged 2 is pivot * (<) MIAI Second tableau is then Value S γ Basic Var ЭC ч 1/2 NIAL 35 1/2 0 y 20 6 Ð O -1 S 1400 20 O 0 -10 ρ

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject DECISION MATHEMATICS 6689

ø

Question number	Scheme	Marks
4 (contati	O values vous 1: 35/1 = 70 vous 2: 20/2 = 10 ×t so myed @ is pivot Third tableau is	μιΑι
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A 1 A 1/(8)
(1)	So $3c = 10$, $y = 30$, $p = 10$ 3c + 2y = 70 goes through $(0, 35)$ $(70, 0)3c + 2y = 90$ goes through $(0, 45)$ $(30, 0)3c + 2y = 90$ goes through $(0, 45)$ $(30, 0)So A is (0, 35) D is (30, 0)$	MIAI
(e)	C is given by and 3>(+2y =90 so >c = 10 and y = 30 Initeal tableau relates to O (se = 0, y=0, P=0)	MIAI (4) BI
	Second tableau relation to A (s(=0, y=ss p=1400) Third tableau relation to C (s(=10, y=3C P=1500)	Β) β) (3)
		20

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject DECISION MATHEMATICS 6689

.

Final

Question number	Scheme	Marks
ı))	A B G C H	MI (A-26) AI AI (H-2K) AI (L) BI arrows [5]
2) (a)	GC, FO, FG; OE, BC, GA	MI AI; MI AI (4)
(৮)	$\begin{array}{c} A \\ 54 \\ 50 \\ 50 \\ 6 \\ 8 \end{array}$	BI 🖍
	Cont = (20 + 25 + 30 + 35 + 50 + 54), × 1000 = f 214000	mi Ai (3) [7]
3)	Odd vertices B, C, F and G pairings BC + FG = $38 + 40 = 78$ BF + CG = $66 + 68 = 134$ BG + CF = $35 + 28 = 63 $ *	BI MI AI AI(BF+CG)
	Repeat BG and CF Minimum distance = 440 + 63 = 503 m	(4) MLAI∕
	Route e.g. AGBCDEFCFGBA	BI (3)
		D

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject DECISION MATHEMATICS 6689

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject DECISION MATHEMATICS 6689

Ouestion number Marks Scheme (a) either Bubbling from left 5) Bubbling from right or 1 mi 90 50 55 40 20 35 20 25 45 90 50 53 40 20 35 30 25 45 90 50 55 40 20 35 30 45 25 90 55 50 40 20 35 30 25 45 90 50 55 40 20 35 45 30 25 90 55 50 40 35 20 30 25 45 90 50 55 40 20 45 35 30 25 90 55 50 40 35 30 20 23 45 90 50 55 (40 45) 20 35 30 25 90 55 50 40 35 30 25 20 43 90 50 55 45 40 20 35 30 25 90 55 50 40 35 30 25 45 20 A1 (1" pas) 90 55 50 45 40 20 35 30 25 90 55 50 45 40 35 20 30 25 Alf (2" pass) 90 55 50 40 35 30 45 25 20 90 55 50 45 40 35 30 20 25 A1/(3" p4ss) 40 55 50 40 35 45 30 25 20 90 55 50 45 40 36 30 25 20 90 55 50 (40 43) 35 30 25 20 AL ESO 90 55 50 45 40 35 30 25 20 (5) 475 = 3.96 so lower bound is 4 tapes (6) m1 A1 (2) Tape 1: 90 + 30 (full) Tape 3: 45+40+35 (full) Tape 5: 20 MI (c) A١ Tape 2: 55 + 50 Tape 4: 35 + 30 + 25 + 20 (3) A١ (d) Tape 1: 90+30 (full) e.g. Tape 2: 55+35+30 (Jul) Mi Tape 3:45+40+35 (July) AN (1)Tape 4: 50+25+20+20 12

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject DECISION MATHEMATICS 6689

Question number	Scheme	Marks
6) (a)	Finds a cut less than 30 es AB, AD, CD, ce -25 or AB, BD, ET -24	MIAIAI
	giving is value or a consideration of flow input / flow output through e.g. And c	(3)
(6)	(i) $SABT - 6$ (ii) $SCET - 10$	B1 B1 (2)
() (e)		B1 (1)
(d)	$S = \begin{bmatrix} 10 & E \\ 10 &$	mi Al
		mi At
	e.g. SADBT -4 SCOBT -2 SCOBT -2 SCOET -2, max flow 24	AL BI
(e)	e.g. 10 h f h	m1 A) (2)
(5)	Refers to max flow-min cut theorem and the cut though AB, BD, ET of vertue 24	mi Ai (2)
		回

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject DECISION MATHEMATICS 6689

, ; ,

Question number	Scheme								Marks	
7 (a)(;)	Slack au ≯	varial 0	les, use	d to end	able us	to write	· inequ	alities as	equalities	MIAI
(11)	P - 3	x - 6	y - 4 z	:=0	·					BI (3)
(b)	b.v.	x	3	z	r	s	Ł,	value		
ĊĊ	٢	١	Û	1	١	0	0	ц		W) I
	s	۱	9	2.	0	١	0	6	R2-4	1
	F	١	١	1	٥	0	1	12		
	P	-3	-6	- 4	0	٥	0	0		
									-	
	b.v.	х	১	Z	۲ 	s	£	Value	-	AI (R2)
	ſ	\widehat{O}	đ	۱	١	0	0	4	,	
	У	4	L	1 Z	Ö	4	o	12	a _ R=	
	Ł	3 L	Ø	12	0	- 4	1	101	пз 1 ()	
	·P	-12	0	-1	0	12	0	٩	R4 + 6 K2	AL (pixet)
				~	r	c	F	value		
	<u>b.v.</u>	<u>x</u>	<u> </u>					 L+		- mi
	ус	١	0	ł	۱ ,		0	-, L	R2 - t.R.	AL
	. 9	٥	١	4	- 4	4	0	ت ا	1 -	
	F	0	o	34	- 3 4	- 4	١	12	$R_3 - i R_1$	AI
	P	0	Ø	12	12	12	0	15	R4+12R,	A1 (10)
(د)	Mas	sei mun	n prof	it is	£ 15					MI AIV
	whe	Λ X	= 4 k	م , <i>د</i>	1 = - 1 '	kg Z	== 0 +	<u>'</u> 9		AIS
		(1]	م ا	econd	Constrain	ts have	no sl	ack		a.
	-Jhe -The	firse r is 0	stach	of (7.	±) in th	e third	constrai	1 E		(4)
	·1 758,			• (/					
										回

Question 2 Prims Algorithm (a) only

Port (a) is worth & morks. If they use Prim they will get 2 morks maximum Put S.C in the morsin.

M1 - Their first 4 ares correct - bree groving is a connected maner

AI - cao

E.g. for m mots for m, statist A AG, GC, GF, FD BC, CG, GF; FO for M, status at B CG, GF, FD, DE for MI staty of C staty of P for m, DF, FG, GC, DE ED, OF, FG, GC for m, study at E FD, FG, GC, DE for M, starting of F GC, GF, FD, DE for M, starts, d G

S& Jamen

. . .

*	Q 5a Ascending	
	MARKAS MISREAD - unless 1	they revene in <u>(a)</u>
	Left to Right	Right & Capt
- -	90 50 55 40 20 35 30 25 45	90 50 55 40 20 35 30 25 45
	50 90 55 40 20 35 30 25 45	90 50 55 40 20 35 25, 30 45
	50 55 (90 40) 20 35 30 25 45	90 50 55 the 20 25 35 30 4-5
	50 55 40 60 20 35 30 25 45	90 50 (55 20) 40 25 35 30 45
	50 53 40 20 50 35 30 25 45	90 50 20 55 40 25 35 30 45
	50 55 40 20 35 90 30 25 45	(90 22) 50 55 40 25 35 30 45
	50 55 40 20 35 30 90 25 45	(MIAI) 20 90 50 55 40 25 35 30) 45
΄.	50 55 40 20 35 30 25 90 45	20 90 50 55 (4025) 30 35 45
()	50 (55 40) 20 35 30 25 45 90 (MIA))	20 90 50 55 25 40 30 35 45
	50 40 (55 20) 35 30 25 45 90	20 90 50 25 55 40 30 35 45
	50 40 20 (55 35) 30 25 45 90	20 90 25 50 55 40 30 35 45
	50 40 20 35 55 30 25 45 90	(Air) 20 25 90 50 55 (10 30) 35 45
	50 40 20 35 30 55 25 45 90	10 25 90 50 55 30, 40 35 45
	50 40 20 35 30 25 55 43 90	1 20 25 90 00 30 55 40 35 45
	50 40 20 35 30 25 45 55 90 (AN)	20 25 90 30 50 55 40 35 45
	40 50 20 35 30 25 45 55 90	(AW) 20 25 30 90 50 55 (2035) 45
	40 20 50 35 30 25 45 55 90	20 25 30 90 50 55 33 40 45
	40 20 35 50 30 25 45 55 90	20 25 30 90 50 33 55 40 45
······································	40 20 35 30 50 23 45 55 90	1 20 25 30 (10 35) 50 55 40 45
\bigcirc	40 20 35 30 25 50 43, 55 90	2025 30 35 90 50 (55 40) 45
Source 2	(40 20)35 30 25 45 50 53 90 (AIN)	20 25 30 35 90 50 40 55 45
	20 (40 35) 30 25 45 50 55 90	10 25 30 35 90 40 50 55 45
	20 35 (40 30) 25 45 50 55 90	10 15 20 35 40 90 50 (55 43)
	20 35 30 40 25 45 50 55 90	20 25 30 35 40 90 50 45 55
	20 35 30 25 40 45 50 55 90	20 25 30 35 40 90 45 50 55
	20 30 35 25 40 45 50 55 90	20 25 30 35 40 45 90 50 55
· .	20 (30 25) 35 40 45 50 55 90	20 15 30 35 40 45 50 (90 53)
	20 25 30 35 40 45 50 55 90 (Alcso)	(A1 cro) 20 25 30 35 40 45 50 55 90
	Stop. New sullad	(Now subject) Stop
	(a) 2A3	
		1

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject DECISION MATHEMATICS 6689

Question number Scheme Marks 1) Ĥ BI (a) βI (2)B . 2 ς Possible paths (b) A-2=D-4 = 0 - 4 m A 1 N = 1 - A = 2 - 0 = 4N=2-0=4 or 0-4 A1 A - 1 0-4 A - 2 6-5 ß - 3 6-5 B-3 N - Z N = 1(h)AI (م) Crives second alternating path 161 $\dot{0}$ 10 names so middle is [±(10+1)]=6 FEW MIAI SABINE must occur after FEW so list reduces to -7. Osbarne 8, Paul 9, Swift 10. Turner AI / middle location is [t(10+7)] = 9 SWIFT SABINE must becur before Swift, so list reduces to 7. Osborne 8. Paul AIV middle location is [±(7+8)] = 8 PAUL A1 (5) SABINE must occur after PAUL, but there is no entry in hist after CSO PAUL - SABINE not in list Iterations reduce list to maximum lengths as follows (ii) MI 1000, 500, 250, 125, 62, 31, 15, 7, 3, 1 (Final iteration to check if list of 1 is the correct name) !! (Atterations A) (2) Cao (active II) 17

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject DECISION MATHEMATICS 6689

Question number	Scheme	Marks
3)(i)(a)	method: choose vertex nearest to A and add to tree for an account choose vertex nearest to any vertex on tree for the specific repeat last step until all vertices included solution to this public	mi Ai
\bigcirc	Order of are selection: AF, FC, FB, FD, EB.	MIAI (4)
b)	$\begin{array}{c} 1 & q & 7 & 11 \\ 3 & 8 \\ C & 0 \end{array}$	BI√ BI√ BI (3)
(c)	Not unique -gives other one, or convincing explanation	
(ii) (a) (b)	number of vertices = n+1	β1 β1 (2)
4) _(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mi(Dijkstia) Al
	$E = \begin{bmatrix} 1 & & & & & & & & & & & & & & & & & &$	AT Y
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1 (4)
	Traceback. Include one Xy if y is already on the path and length of are Xy & final label of y -final label of X	B2,1,0
	or a detailed account for this question	AI
	(AEIJKL)	0 112)
(6)	states other path	D ¹ (4)
		8

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject DECISION MATHEMATICS 6689

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject DECISION MATHEMATICS 6689

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject DECISION MATHEMATICS 6689

EDEXCEL DECISION MATHEMATICS D1 (6689) - JUNE 2002 PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks	
1.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1 A1	
	18 14 13 12 9 6 5 1 0 Datchet (18), Wraysbury (14), Staines (13), Feltham (12), Halliford (9), Ashford (6), Poyle (5), Colnbrook (1), Laleham (0).	A1 A1 ((5 marl	(5) ks)
2. (<i>a</i>)	No negative elements in the profit row.	B1 (1)
(b)	$P = 11, x = 1, y = \frac{1}{3}, z = 0; r = \frac{2}{3}s = 0, t = 0$	M1 A1; A1	
	D + z + z + t = 11	(3) D1	
	P + z + S + l = 11 $\Rightarrow P - 11$ z s t so increasing z s or t would decrease P	DI B1 ((7)
	$\rightarrow I = II = \zeta = S = t$ so increasing ζ , s of t would decrease I .	(6 marl	<u>,</u> 2) [25]
			A 5)
3. (<i>a</i>)	1-C $1-C$	B1	
	2-B $2-A$	B1 (2)
	3-B and $3-D$		
	4-E $4-B$		
	5-D $5-A$		
(b)	2 - B = 4 - C = 1 - E	M1 A1	
	2 - D = 5 - E	M1 A1 (4	1)
		(6 marl	ks)

EDEXCEL DECISION MATHEMATICS D1 (6689) - JUNE 2002 PROVISIONAL MARK SCHEME

Que Nun	stion nber	on Scheme		Mar	ks					
5.	(<i>a</i>)					1				
		а	b	С	d	e	f	f = 0?		
		645	255	2.53	2	510	135	No	M1 A1	
		255	135	1.89	1	135	120	No	M1 A1	
		135	120	1.13	1	120	15	No	A1	
		120	15	8	8	120	0	Yes	A1	
		The answe	r is 15						A1	(7)
	(<i>b</i>)	The first ro	w would b	e						
		255 645	0.40 0 0) 255 No)				M1 A1	
		But the sec solution the	ond row wereafter wo	ould then bould be the	be the sam same.	ne as the fir	st row abo	ove, and the	A1	(3)
	(<i>c</i>)	Finds the H	I.C.F of a	and <i>b</i> .					B1	(1)
									(11 marl	xs)

EDEXCEL DECISION MATHEMATICS D1 (6689) - JUNE 2002 PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
6. (<i>a</i>)	Critical activities B, F, J, K, N (not I); length 25 hours	B1; B1 (2)
(<i>b</i>)	A = 5 - 0 - 3 = 2 $E = 9 - 3 - 4 = 2$ $L = 22 - 11 - 4 = 7$	
	C = 9 - 0 - 6 = 3 $G = 9 - 4 - 3 = 2$ $M = 22 - 16 - 2 = 4$	M1 A1 ft
	D = 11 - 3 - 3 = 5 $H = 16 - 7 - 7 = 2$ $P = 25 - 18 - 3 = 4$	A1
	I = 16 - 9 - 5 = 2	(3)
(c)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	
	$\blacksquare \blacksquare $	M1 A1
		A1 ft
		A1 ft
(<i>d</i>)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		M1
		A1
	3 workers needed	A1 (3)
	Precedences:	
	$D \qquad F \qquad C \qquad E \qquad J \qquad D \qquad L \qquad H \qquad M \qquad L$	(12 marks)
	$\begin{vmatrix} A \\ F \end{matrix} = \begin{matrix} B \\ G \end{matrix} = \begin{matrix} -H \\ G \end{matrix} = \begin{matrix} -H \\ F \end{matrix} = \begin{matrix} -H \\ F \end{matrix} = \begin{matrix} -H \\ K \end{matrix} = \begin{matrix} -H $	
	3 workers needed Precedences: $A \swarrow B \swarrow G G H F \swarrow I J \longrightarrow K K K N M$	A1 (3) (12 marks)

Question Number	Scheme	Marks	
8. (<i>a</i>)	$x + y \ge 380$	B1	
	<i>y</i> ≥ 125	B1	
	$2x + 4y \le 1200$	B1	(3)
<i>(b)</i>	c = 3x + 2y	B1	(1)
(c)	<i>y</i>		
	500	B1	
	r + v = 380	B1	
	300	B1	
	Feasible region	B1	(4)
	200 y = 125		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Use of profit line or points testing	M1	
	Minimum intersection of $x + y = 380$ and $2x + 4y = 1200$		
	$x = 160, y = 120, \text{ cost} = \text{\pounds}920$	A1 A1	(3)
<i>(d)</i>	Maximum at intersection of $y=125$ and $2x + 4y = 1200$	M1	
	$x = 350, y = 125, \text{ cost} = \text{\pounds}1300$	A1 A1	(3)
		(14 ma	arks)

Question Number		Scheme	Marks		
1.	(<i>a</i>)	(A, X, D, V), C, W, B, Y, A	M1, A1 (2)		
	(b)		M1 A1 (2)		
			(4 marks)		
2.	(<i>a</i>)		$\begin{array}{l} \text{M1} \\ \text{A1} (A \rightarrow F) \end{array}$		
		$ \begin{array}{c} $	A1 (dummy)		
			A1 ($G \rightarrow M$)		
		G	A1 (1 start + 1 finish)		
			(5)		
	(<i>b</i>)	<i>H</i> , <i>I</i> and <i>J</i> all depend on <i>E</i> , but <i>I</i> and <i>J</i> depend <i>only</i> on <i>E</i> whereas <i>H</i> depends on <i>E</i> and <i>C</i> and <i>D</i> and <i>F</i>	B1 (1)		
		-	(6 marks)		

EDEXCEL DECISION MATHEMATICS D1 (6689) - NOVEMBER 2002 PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks	
3. (<i>a</i>)			
	G • D		
	J		
		В1, В1	(2)
(b)	C = A - W		
	D = J		
	S = L - W		
	F = G (stop)		
	So either $N = D - J = C - A = W$		
	$Or \ N = D - J = S - L = W$	M1 A1	
	Matchings $A - W$, $G - F$, $J - C$, $L - S$ and $N - D$	A 1	
	Or $A - C$, $G - F$, $J - S$, $L - W$ and $N - D$	AI	(3)
(c)	If J does D , N must do F , leaving G without a sport to coach.	B2, 1, 0	(2)
		(7 ma)	rks)
4. (<i>a</i>)	Odd nodes C, F, G, H	B1	
	CF + GM = 12 + 8 = 20		
	CG + FM = 9 + 7 = 16	M1	
	CM + FG = 9 + 10 = 19	A1	
	So CG and FH should be repeated	A1	(4)
<i>(b)</i>	FH is the shortest path so finish at G	B2, 1, 0	
	Length of route = $137 + 7 = 144$	B1	(3)
		(7 ma)	rks)

Question Number		Scheme	Marks		
7.	(<i>a</i>)	A, E and G	B2, 1, 0		
	(<i>b</i>)	45	B1	(3)	
	(c)	$A = \begin{bmatrix} 1 & 2 & 3 & 12 & 2 & 3 \\ 2 & 2 & 0 & 12 & 0 & 3 \\ 4 & 0 & 0 & 0 & 3 & 0 & 2 \\ 5 & 11 & 10 & 0 & 3 & H \\ 5 & 11 & 10 & 0 & 3 & H \end{bmatrix}$	M1 A1		
		e.g $EHD - 2$	M1 A1		
		<i>ECHD</i> – 1	M1 A1	(6)	
	(d)	B A A G A A G A	M1 A1		
		Maximum Flow 48	B1	(3)	

M1

A1

(2)

(14 marks)

Max flow – Min cut theorem

Cut through *DB*, *DC*, *DH*, *DG*, *DF*

(*e*)

EDEXCEL DECISION MATHEMATICS D1 (6689) - NOVEMBER 2002 PROVISIONAL MARK SCHEME

Question Number			Marks									
8.	(<i>a</i>)	Objective: N	Aaxim	ise P	= 4x +	-5y = 3	3 <i>z</i>				B1	
		Subject to	3x + 2	2y + 4z	$z \le 35$						B1	
			<i>x</i> +	3y + 2	$z \le 20$						B1	
			4 <i>x</i> +	5y + 3	$z \le 24$						B1	(4)
	(<i>b</i>)	Basic Variable	x	у	Z.	r	S	t	Value]		
		r	2	0	$\frac{5}{4}$	1	0	$-\frac{1}{2}$	23	$R_1 - 2R_2$	M1	
		S	$-\frac{1}{2}$	0	$-\frac{1}{4}$	0	1	$-\frac{3}{4}$	2	$R_2 - 3R_3$	A1	
		у	$\frac{1}{2}$	1	$\frac{3}{4}$	0	0	$\frac{1}{4}$	6	$R_3 \div 4$	M1	
		Р	$-\frac{3}{2}$	0	$\frac{3}{4}$	0	0	$\frac{5}{4}$	30	$R_4 + 5R_3$	A1	(4)
		Basic								1		
		Variable	x	У	Z.	r	S	t	Value			
		x	1	0	$\frac{5}{4}$	$\frac{1}{2}$	0	$-\frac{1}{4}$	$\frac{23}{2}$	$R_1 \div 2$	M1	
		S	0	0	$\frac{3}{8}$	$\frac{1}{4}$	1	$-\frac{7}{8}$	$\frac{31}{4}$	$R_2 + \frac{1}{2}R_1$	A1	
		у	0	1	$\frac{1}{8}$	$-\frac{1}{4}$	0	$\frac{3}{8}$	$\frac{1}{4}$	$R_3 - \frac{1}{2}R_1$	M1	
		Р	0	0	$\frac{21}{8}$	$\frac{21}{8}$	0	$\frac{7}{8}$	$\frac{189}{4}$	$R_4 + \frac{3}{2}R_1$	A1	(4)
		$P = 47 \frac{1}{4}$	<i>x</i> = 11	$\frac{1}{2}, y =$	$=\frac{1}{4}, z$	z = 0				-	M1 A1 A1	(3)
	(<i>c</i>)	There is sort therefore ind	ne slac crease	$k \left(7\frac{3}{4}\right)$ Proce) on <i>S</i> ssing a	, so <i>dc</i> and Pa	o <i>not</i> ii cking	ncrease which	e blendin are both	g; at their limit	B2, 1,0	(2)
		at prosone									(17 ma	rks)

EDEXCEL DECISION MATHEMATICS D1 PROVISIONAL MARK SCHEME JANUARY 2003

Question number	Scheme	Marks	
1.	e.g. <i>A</i> Finding a Hamiltonian cycle, e.g. <i>A C E B D A</i>	B1	
	C Re-drawing graph – Hamiltonian cycle at least	M1	
	$D \qquad \qquad$	A1	
	$B \qquad \qquad \text{All correctly drawn}$	A1	(4)
			(4 marks)
2. (a)	$ \begin{array}{c} H \\ J \\ F \\ M \\ F \\ M \\ F \\ G \\ F \\ F \\ S \\ F \\ F \\ F \\ S \\ F \\ F \\ F \\ S \\ F \\ F$	B1 B1	(2)
(b)	Y - D = H F = T S = M - P breakthrough	M1 A1	
	changing status, the possible alternating paths are (i) $Y = D - H = P$ or (ii) $Y = D - H = F - T = S - M = P$ giving the following matching (i) or (ii)	A1	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	(4)
			(6 marks)

Question number	Scheme	М	arks
3.	$y + z \le \frac{1}{2}x \qquad \Rightarrow \qquad 2(y + z) \le x$	B1	(1)
	$y \ge \frac{10}{100} (x + y + z) \implies x + z \le 9y$	M1 A1	(2)
	$y \ge \frac{20}{100} (x + y + z) \implies x + z \ge 4y$	M1 A1	(2)
	$z \ge \frac{1}{2}y \qquad \Rightarrow \qquad 2z \ge y$	B1	
	$x \ge 0, \ y \ge 0, \ z \ge 0,$		
	$x + y + z \ge 250$	B1	
	objective function: minimise; $c = 20x + 26y + 36z$	B1; B1	(4)
			(9 marks)
4. (<i>a</i>)	<i>B</i> and <i>E</i> are the only odd vertices, repeating a route between them will make them even		B1 (1)
(b)	BA + AE = 17 + x		
	BD + DE = 2x + 9		
	BC + CE = 21	M1 A1	(2)
(c)	2x + 9 < x + 17 and $2x + 9 < 21$		
	x < 8 and $x < 6$	M1 A1	
	$\therefore 0 < x < 6$ for both to be true in context	A1	(3)
<i>(d)</i>	If $x = 7$, repeated route is $BC + CE$	B1	
	Total time is $(3(7) + 47) + 21 = 89$	M1 A1	(3)
			(9 marks)
Question number	n Scheme	Marks	
---------------------------	---	----------------	--------------
5. (a) $x = 31, y = 17$	B1 B1	(2)
(b	A - E		
	J-L	M1 A1	(2)
	C = D = G	M1 A 1	(2)
(($107 \div 30 - 2.0 (1 \text{ d.p.}) \dots 5 \text{ workers}$		(2)
(4) For example,		
	$\overbrace{0 \ 2 \ 4 \ 6 \ 8 \ 10 \ 12 \ 14 \ 16 \ 18 \ 20 \ 22 \ 24 \ 26 \ 2 \ 8 \ 3 \ 0 \ 3 \ 2 \ 3 \ 4 \ 3 \ 6 \ 3 \ 8}}_{3 \ 6 \ 3 \ 8}$		
	$\longleftrightarrow \longrightarrow \longleftrightarrow \leftrightarrow \longleftrightarrow \longrightarrow \longleftrightarrow \longrightarrow \longleftrightarrow$		
ļ			
		(10 mar	ks)
6. (<i>a</i>)(i)	left to right or right to left		
	25 22 30 18 29 21 27 21 25 22 30 18 29 21 27 21 25 30 22 18 29 21 27 21 25 22 30 18 29 21 27 21 25 30 22 18 29 21 27 21 25 22 30 18 29 27 28 21	M1	
	25 30 22 29 18 21 27 21 25 22 30 29 18 27 21 25 30 22 29 21 18 27 21 25 30 22 29 18 27 21 21	A1 (1st pass)	
	25 30 22 29 21 27 18 21 30 25 22 29 18 27 21 21 25 30 22 29 21 27 21 18 30 29 25 22 27 18 21 21	A1	
(11)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1 cso	(5)
(<i>b</i>)(i)	rod 1 30 18		
	2 29 21		
	3 27 22	M1 (to the 22)	
(ii)	4 23 21 193 ÷ 50 = 3.86 · 4 rods needed so minimum	A1 M1 A1	(2)
(11)		(9 mar	·ks)

EDEXCEL DECISION MATHEMATICS D1 PROVISIONAL MARK SCHEME JANUARY 2003

Que: num	stion nber	Scheme				Marks						
8.	(<i>a</i>)	2x + 3	$2x + 3y + 4z \le 8$							B1		
		3x + 3	$3x + 3y + z \le 10$							B1		
		P=8.	x + 9y -	+ 5z							B1	(3)
	<i>(b)</i>				\downarrow							
			b.v	x	у	Z.	r	S	Value]		
			r	2	3	4	1	0	8	-		
			S	3	3	1	0	1	10	-		
			Р	-8	-9	-5	0	0	0			
			r	\downarrow			1	1	1	1		
			b.v	x	У	Z.	r	S	Value	-	M1	
			У	$\frac{2}{3}$	1	$\frac{4}{3}$	$\frac{1}{3}$	0	3	$R_1 \div 3$	A1	
			S	(1)	0	-3	-1	1	2	$R_2 - 3R_1$	M1	
			Р	-2	0	7	3	0	24	$R_3 + 9R_1$	A1	
			b.v	x	у	Z.	r	S	Value		M 1	
			у	0	1	$\frac{10}{3}$	1	$-\frac{2}{3}$	$\frac{4}{3}$	$R_1 - \frac{2}{3}R_2$	A1	
			x	1	0	-3	-1	1	2		M1	
			Р	0	0	1	1	2	28	R_3+2R_2	A1	(8)
	(<i>c</i>)	P=2	8								M1	
		<i>x</i> = 2,	$y = \frac{4}{3}$	<u>-</u>							A1	
		z = 0,	r=0,	s = 0)						A1	(3)
												(14 marks)

Question number		Mark scheme	Mark	S
1.		e.g. $C - 2 = A - 5 = E - 4$ cs $C = 2 - A = 5 - E = 4$	M1 A1	
		F-1=B-3=D-6 cs $F=1-B=3-D=6$	M1 A1	
		$\therefore A = 1$, $B = 3$, $C = 2$, $D = 6$, $E = 4$, $F = 1$	A1	(5)
			(5 m	arks)
2.	(<i>a</i>)	Each arc contributes 2 to the sum of degrees, hence this sum must be even. Therefore there must be an even (or zero) number of vertices of odd degree.	B2, 1, 0	(2)
	<i>(b)</i>	If $x > 9$, $10\frac{1}{2}x - 26 = 100$,	B1, M1 A	1
		$\Rightarrow x = 12$	A1	(4)
		(If $x < 9$, $11\frac{1}{2}x - 35 = 100 \implies x = 11\frac{17}{23}$ inconsistent)		
			(6 m	arks)
3.	(a) (b) (i)	 For example: In Prim the tree always 'grows' in a connected fashion; In Kruskal the shortest arc is added (unless it completes a cycle), in Prim the nearest unattached vertex is added; There is no need to check for cycles when using Prim; Prim can be easily used when network given is matrix form Either AC, AB, BD, BE, EF, EG (if starts at A or C) or BD, BA, AC, BE, EF, EG (if starts at B or D) or EF, EG, BE, BD, BA, AC (if starts at E or F) 	B3, 2, 1, 0) (3)
		or GE, EF, BE, BD, BA, AC (if starts at G)	M1 A1	
	(ii)	EF, AC, BD, BA, EG, BE	M1 A1	(4)
			(7 m	arks)

Question number	Mark scheme	Marks
4. (<i>a</i>)	For example	
	R P B Y T K M H W G	M1 A1
	$B H G \overline{K} R P Y \overline{T} M W$	A1 ft
	$B \bigcirc H K R \bigcirc M T Y \circlearrowright$	A1 ft
	B G H K M P R T W Y	A1 ft (5)
	B G H K M P R T W Y	
<i>(b)</i>	$\left[\frac{10+1}{2}\right] = 6 \text{ Palmer; reject Palmer} \rightarrow \text{Young}$	M1 A1
	$\left[\frac{5+1}{2}\right] = 3$ Halliwell; reject Boase \rightarrow Halliwell	A1
	$\left[\frac{4+5}{2}\right] = 5 \text{ Morris; reject Morris}$	
	List reduces to Kenney – name found, search complete	A1 (4)
		(9 marks)

EDEXCEL DECISION MATHEMATICS D1 (6689) – JUNE 2003

Question number	Mark scheme	Marks	
6. (<i>d</i>)	For example:		
(cont.)	<i>Point testing:</i> test all (5) points in feasible region find profit at each and select point yielding maximum	B1	
	<i>Profit line:</i> draw profit lines with gradient $-\frac{3}{5}$		
	select point on profit line furthest from the origin	B1 (2)	
<i>(e)</i>	Optimal point is (6, 7); make 6 Oxford and 7 York	M1; A1 ft	
	$Profit = \pounds 5300$	A1 ft (3)	
(f)	The line $3.5x + 4y = 49$ passes through (6, 7) so reduce <u>finishing by 7</u> hours	M1 A1 ft A1	
		(3)	
		(15 marks)	

EDEXCEL DECISION MATHEMATICS D1 (6689) – JUNE 2003

Question Number	Scheme]	Marks
1.	(a) All arcs must be traversed twice. (So no arc needs repeating more than twice.) All valencies therefore even.	B1	(1)
	(b) e.g. <i>CECAEFEAFABFBACDBDGFGDC</i>	M1	A1
	$length = 2 \times 6$ $= 12km$	A1	(3) 4
2.	(a) $A \xrightarrow{B} C$	B1	(1)
	(b)		
		M1	
		A1	
		A1	(4)
	∴ planar, so product can be built		5

Question Number		Scheme	N	larks
3.	(a)	Add A to 3, B to 4, C to 1 and F to 5 in a distinctive way	B1	(1)
	(b)	<u>e.g.</u> $D-3 = A-1 = C-4 = B-2$	M1	
		C.S. $D = 3 - A = 1 - C = 4 - B = 2$	A1	(2)
		E - 5 = F - 6	M1	
		C.S. $E = 5 - F = 6$	A1	
		A = 1 $B = 2$ $C = 4$ $D = 3$ $E = 5$ $F = 6$	A1	(3)
				6
4.	(a) (b)	e.g. $ \underbrace{B}_{C} \xrightarrow{H}_{E} \xrightarrow{G}_{I} \xrightarrow{J}_{L} $ D will only be critical if it lies on a longest route. $ \underbrace{ABEG - 14}_{ACFG - 15} \\ ACDEG - 13 + x $	M1 A1 A1 A1 A1 A1 M1	(6)
		So D critical if $x \ge 2$ (must be \ge not >)	A1	(2)
				8
5.	(a)	Bin 1 – 75+20 Bin 2 – 70 +20 Bin 3 – 60+40 Bin 4 – 50+35 Bin 5 – 20 5 Planks needed: cost £15 Wastage = 5+10+0+15+80 = 110cm	M1 A1 A1 A1 A1	(5)

Question Number		Scheme		Marks	
5. (cont)	(b)	Bin 1 $(1.5m) - 75 + 70$ Bin 1 $(1m) - 75 + 20$ Bin 2 $(1.5m) - 60 + 50 + 40$ Bin 3 $(1m) - 35 + 20 + 20 + 20$ Bin 1 $(1m) - 75 + 20$ Bin 3 $(1.5m) - 70 + 60 + 20$ Bin 3 $(1.5m) - 70 + 60 + 20$ Cost £11	M1 A1 A1		
		1.5m lengths better value than 1m lengths to use as many as possible	A1		(4) 9
6.	(a) i	A connected graph with no cycles, loops or multiple edges	B1		
	ii	A tree that includes all vertices	B1		
	iii	A spanning tree of minimum total length	B1		(3)
	(b)	 E.g. In Kruskal the shortest <u>arc</u> is added (unless it completes a cycle), in Prim the nearest unattached <u>vertex</u> is added There is no need to check for cycles when using Prim, but there is when using Kruskal In Prim the tree always "grows" in a connected fashion Kruskal starts with the shortest edge, Prim with any vertex 	B1		(1)
	(c)	BH, NF, HN, HA, BE, NC; length = 48	M1	A1;	A1
		$B \xrightarrow{5} H \xrightarrow{R} A$	A1		(4)

Question Number	Scheme	Marks			
6. (cont)	(d) 50 80 70 60 60	B1			
	<u>New cable – 390m</u>	M1	A1	(3) 11	
7.	(a) $x = 3$, $y = 26$	B1,	B1	(2)	
	(b) $S \xrightarrow{42}_{41} F_2 F_1 R_1 \xrightarrow{R_1}_{R_2} \xrightarrow{47}_{10} T$	M1 A1	A1	(3)	
	(c) $7 A \gg 8$ $12 F_1 = 20 F_1 = 20 F_1 = 12 F_2 = 20 F_1 = 16 F_1 = 12 F_2 = 12 F_1 = 12 F_2 = 12 F_1 = 16 $	M1 A1 A1		(3)	

Question Number	Scheme	Mark	s
7. (cont)	(c) (cont.) <u>e.g.</u> $S F_1 A E R_1 T - 7$	DM1	
	$S F_1 B E R_1 T - 5$	A1	
	$S F_1 B G R_1 T - 1$	A1	
	SF ₂ CDBGR ₂ T-4	A1	(4)
	(d) e.g. $I = \frac{19}{15}$ $I = \frac{19}{15}$ $I = \frac{19}{15}$ $I = \frac{10}{10}$ $I = \frac{10}{12}$ $I $	B1 B1	(2)
	(e) <u>e.g.</u>		
	F ₁ A, BE, BG, CG, CR ₂ , CR ₃ (=82)		
	Or ER_1 , BG, CG, CR ₂ , CR ₃ (=82)	M1 A1	(2)
			16

Question Number		Scheme		Marks
8.	(a)	$x + 2y + 4z \le 24$	B1	
	(b) i	x + 2y + 4z + s = 24	B1	N
	ii	$s(\geq 0)$ is the slack time on the machine in hours	B1	
	(c)	1 Euro	B1	(4)
	(d)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M1	A1√ A1 (3)
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M1	$ \begin{array}{c} A1 \\ A1 \\ (3) \end{array} $
		Profit = 31 Euros $y = 7$ $z = 2.5$ $x = r = s = 0$ medium large	M1	A1 $A1$ (3)
	(e)	Cannot make ½ a lamp	B1	(1)
	(f)	e.g. (0, 10, 0) or (0, 6, 3) or (1, 7, 2)	B1	
		checks in both inequalities	B1	(2)
				16

Question	Mark Scheme	Marks	
1. (a)	A graph consisting of <u>two distinct sets of vertices</u> X and Y in which <u>arcs can only join a vertex in X to a vertex in Y</u> .	B1 B1 (2)	
(b)	A path <u>from an unmatched vertex in X to an unmatched vertex</u> in Y which <u>alternately uses arcs in/not in the matching</u> .	B1 B1 (2)	
(c)	The (1-1) matching / pairing of <u>some</u> elements of X with elements of Y.	B1	
(d)	A <u>1-1</u> matching between <u>all</u> elements of X onto Y	B1 (2)	
		(6))
2. (a)	Yes, there are <u>no negative</u> values in the <u>profit row</u>	B1 (1)	
(b)	$p = 63, x = 0, y = 7, z = 0, r = \frac{9}{2}, s = \frac{2}{3}, t = 0$	M1, A1, A1, (3)	
(c)	$\frac{63}{7} = 9$	M1, A1 (2)	
		(6)

Question	Mark Scheme	Marks	
3. (a)	$C_1 = 7 + 14 + 0 + 14 = 35$	B1	
	$C_2 = 7 + 14 + 5 = 26$	B1	
	$C_3 = 8 + 9 + 6 + 8 = 31$	B1	(3)
(b)	Either Min cut = Max flow and we have a flow of 26 and a cut of 26 or C2 is through saturated arcs	B1	(1)
(c)	Using EJ (capacity 5) e. g – will increase flow by 1– ie increase it to 27 since only one more unit can leave E. - BEJL - 1	M1 A1	
	Using FH (capacity 3) e. g.– will increase flow by 2 – ie increase it to 28 since only two more units can leave F. - BFHJL - 2 Thus choose option 2 add FH capacity 3.	A1	(3) (7)
4. (a)	BD + FG = 1.3 + 0.9 = 2.2 *	M1	
	BF + DG = 1.5 + (1.3 + 0.7) = 3.5	A1	
	BG + DF = 0.7 + (0.9 + 0.8) = 2.4	A1	
	Repeat BD and FG		(3)
	Route e.g. GABC <u>DB</u> FEDBG <u>FG</u>	B1	
	Length = $8.9 + 2.2 = 11.1$ km	M1 A1	(3)
(b)	Only now need to repeat BF of length $1.5 < 2.2$	M1 A1	\checkmark
	Length = $8.9 + 1.5 = 10.4$ km saving 0.7 (km)	A1	(3)
			(9)

Question	ion Mark Scheme				Marks			
5. (a)								
	a	b	c	Integer?	Output list	a = b?		
	90	2	45	Yes	2	No	M1	
	45	2	22.5	No			A1	
	45	3	15	Yes	3	No	A1 🔨	
	15	2	7.5	No			M1	
	15	3	5	Yes	3	No	A1	
	5	2	2.5	No				
	5	3	$1\frac{2}{3}$	No			M1	
	5	5	1	Yes	5	Yes		
			Out	put list: 2,3,3	3,5		A1	(7)
(b)	Gives the	e prime fa	actorisati	on of a			B2, 1, 0	(2)
(0)	C = 1						B1	(1)
(0)	C – 1						DI	(1)
								(10)
6. (a)	<u>See overl</u>	<u>ay</u>					B1	
							B1	(2)
(b)	$BD, \left(\frac{AC}{DF}\right), BC, Not CD, DE$						M1 A1, A1 B1	
	Length =	18 km					B1	(5)
(c)	DB, DF, BC, CA, DE [5,2,4,1,6,3,]					M1 A1 A1	(3)	
								(10)

Quest	tion	Mark Scheme	Marks	
7.	(a)	<u>See overlay</u>	B5, 4, 3, 2, 1, 0	(5)
	(b)	Either point testing or profit line	M1	
		A $(3\frac{5}{6}, 3\frac{1}{2}) \rightarrow 25\frac{1}{6}$, B $(8\frac{1}{2}, 3\frac{1}{2}) \rightarrow 34\frac{1}{2}$, Accept C $(4,8) \rightarrow 48$ and D $(3,6) \rightarrow 36$ Profit line gradient $-\frac{2}{5}$	A1	
		Identifies A $(3\frac{5}{6}, 3\frac{1}{2})$ cost $25\frac{1}{6}$	A1, A1	(4)
	(c)	Either point testing or profit line	M1	
		$A(3\frac{5}{6}, 3\frac{1}{2}) \rightarrow \text{not integer so try } (4,4) \rightarrow 20$ Profit line		
		$B(8\frac{1}{2}, 3\frac{1}{2}) \rightarrow \text{not integer so try } (8,4) \rightarrow 32$		
		\rightarrow try (7,5) \rightarrow 31 gradient - $\frac{3}{2}$		
		Accept C (4,8) $\rightarrow 28$ and D (3,6) $\rightarrow 21$	A1	
		Identifies (8,4) profit 32.	A1 A1	(4) (13)
8.	(a)	x = 0, y = 7, z = 9	B1. B1. B1.	(2)
	(h)	Length $= 22$ critical activities B D F I	B1 B1	(3)
	(0)	Eligin $= 22$, entital activities $\mathbf{D} \cdot \mathbf{D} \cdot \mathbf{E}$	D1, D1,	(2)
	(c) (i)	Float on $N = 22 - 14 - 3 = 5$	B1	
	(ii)	Float on $H = 16 - 5 - 3 = 8$	M1 A1	(3)
	(d)	<u>See overlay</u>	B4, 3,2,1,0	(4)
	(e)	Attempt at 1. e.t. and e.e.t. 22 hours	M1 A1	(2) (14)

Question Number		Scheme	Mark	S
1.	(<i>a</i>)	A la		
		G 1b		
		N • 3	B1 B1	(2)
		P • 4		
		<i>s</i> • <i>5</i>		
	(<i>b</i>)	For example:		
		(i) $P-2 = L-4$ c.s. $P = 2 - L - 4$	M1	
		(ii) $S-2 = L-1a = A-3$ c.s. $S = 2-L = 1a - A = 3$	A1	
		giving		
		A-1, G-1, L-4, N-5, P-2		
		A-3, G-1, L-1, N-5, S-2	A1	(3)
	(<i>c</i>)	Sam must do 2 and Nicola must do 5, leaving Philip without a task.	B2, 1, 0	(2)
			(7 ma	arks)

Question Number	Scheme		S
3. (<i>a</i>)	Idea of travelling along each <i>arc</i> at least once and seeking to do so in a minimum total. <i>Practical</i> meaning of arcs/numbers.	B1	(1)
<i>(b)</i>	AB + DF = 32 + 9 = 41	M1 A1	
	AD + BF = 25 + 15 = 41		
	AF + BD = 18 + 24 = 42	A1	
	Repeat <i>either</i> $AE + EB$ and DF or AD and BF	A1 ft	(4)
(<i>c</i>)	Not unique, e.g. gives other solution	A1 ft	
(d)	258 + 41 = 299	B1	(2)
(<i>e</i>)	DF is the shortest so start/finish at A/B	M1 A1	(2)
		(9 ma	arks)

Question Number			Scł	neme				Ma	arks
4. (<i>a</i>)	The list is not	in alphabetica	al order					B1	(1)
<i>(b)</i>	Use of Bubble	e Sort or Quick	x Sort					M1	
	For example:								
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ubble sort B C E S I L C E P S Y L E P S M Y L P S M Y L P S M N P Y S M N P S S more changes S S S	5 1st pass 5 2nd pas 5 3rd pass 5 4th pass 5 5th pass 7 6th pass	$ \begin{array}{c} G \\ B \\ B \\ C \\ B \\ C \\ B \\ C \\ C \\ B \\ C \\ C \\ E \\ B \\ C \\ E \\ C \\ C \\ E \\ C \\ C \\ E \\ C \\ C$	$\begin{array}{c} \mathbf{Quic} \\ Y L \\ B \\ M Y L \\ E \\ E \\ L \\ N \\ G \\ L \\ M \\ G \\ L \\ M \\ \end{array}$	k sort C E S C E S M Y S M S P M P S N P S N P S N P S and no more	P P 1st pass P 2nd pass Y 3rd pass Y 4th pass Y 5th pass Y 6th pass e ctanges	A1 A1 A1	(4)
(c)	1 2	3 4	5	6 7	8	9	10		
	B C	E G	L	M N	Р	S	Y		
	$\frac{[10+1]}{2} = 6$	Manchester	discard	first half	of list and	pivot		M1 A1	
	$\frac{[7+10]}{2} = 9$	Southampton	discard	last half o	of list and	pivot			
	$\frac{[7+8]}{2} = 8$	Plymouth	discard	last half o	of list and	pivot		A1	
	Final term 7	Newcastle, th	nerefore v	word found	d at 7			A1	(4)
								(9	marks)

Question Number	Scheme	Marl	ks
5. (<i>a</i>)	x = 9, y = 16	B1 B1	(2)
(b)	Initial flow = 53 – either finds a flow-augmenting route or demonstrates not enough saturated arcs for a minimum cut	B1 B1	(2)
(c)	$C \longrightarrow 20$ $A \longrightarrow 9$ $C \longrightarrow 0$ $F \longrightarrow 0$ \longrightarrow 0$	M1 A1	(2)
	e.g. <i>IDA</i> – 9	A1	
	IFDA - 24	A1	
	$\max flow - 64$	B1	(3)
(<i>d</i>)	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	M1 A1	(2)
(<i>e</i>)	Max flow – min cut	M1	
	Finds a cut GC, AF, DF, DJ, EI, EH value 64	A1	(2)
	Note: must not use supersource or supersink arcs.		
		(13 m	arks)

Question Number	Scheme	Marks
6. (<i>a</i>)	Maximise $P = 30x + 40y$ (or $P = 0.3x + 0.4y$)	B1
	subject to $x + y \ge 200$	B1
	$x + y \le 500$	B1
	$x \ge \frac{20}{100}(x+y) \implies 4x \ge y$	M1 A1
	$x \le \frac{40}{100}(x+y) \implies 3x \ge 2y$	A1 (6)
(b)		
	y = 4x	
	500	D1 ft
	400	B1 ft (x + y = 200, x + y = 500) B1 ft
	300 Feasible	b = 1 t (y = 4x) $B1 ft (2y = 3r)$
		B1 ft (shading)
	100 Profit line $x + y = 500$	B1 (labels)
	$0 \qquad x + y = 200 \qquad x + y = 100$	
	 100 200 300 400 500 (NB: Graph looks OK onscreen at 75% magnification but may print out misaligned) 	

Question Number	Scheme	Marks
6. (<i>c</i>)	Point testing or profit line	A1
(cont.)	Intersection of $y = 4x$ and $x + y = 500$	A1
	(100, 400) Profit = £190 (units must be clear)	A1 (3)
		(11 marks)

November 2004 6689 Decision Mathematics D1 Mark Scheme

edexcel

Question Number	Scheme	Marks
(a)	(By conservation of flas at B, C and D)	B3,25,14,0
	$\frac{x = 11}{(\sqrt{x-6})} \frac{y = 5}{(\sqrt{y+7})}$	(3)
(b)	Flow is 31 (max flow = min cut), cut through AB, AC and SD	B1 B1 (2) 5
2 (a)(i)	A graph is planar if it can be drawn so that no ares cross - other than at vertices	BI
(ii)	A cycle that passes through ever vertex of a graph once and returns to its starting vertex	B2,1,0 (3)
رنى (م)	e.g.	MIAI
(1)	It is not possible to find on Hamiltonian cycle	BI (3) 6

ار م

6689 Decision Mathematics D1 November 2004 Advanced Subsidiary/Advanced Level in GCE Mathematics

Question Number	Scheme	Marks
3) (a) (l)	A to a l B to a l B to a l	BI
		BI
	E and S F administration 6	(1)
(L)	eg $B - 1 = C - 2$ c.s. $B = 1 - C = 2$ A = 5, $B = 1$, $C = 2$, $E = 6$, $F = 4$	mial Biles) AIN (4)
(۵)	ES. Both A and D are only matched to 5, once one has been continued the other can not be. • E is the only person who can do 3, and the only person it can do 6 if they are assigned to one of these the other connectedare.	B2,1,0 (2) [8]

Question Number	Scheme	Marks
4) (c)	eg. 45 37 18 [46] 56 79 90 81 51 or 37 18 [45] 56 79 46 90 81 51	MIAI
	or 45 37 46 18 (51) 56 79 90 81	(2)
(6)	56 45 79 46 37 90 81 51 18 090 45 56 37 79 46 18 81 51	miA1 (2)
(0)	[1+1]= 6 value 14++ discard top	mi
	[7+11] = 9 Labre 71 discord top	A,
	$\begin{bmatrix} 10+11\\ 2 \end{bmatrix} = 11$ value 94 discus bettom	Aı
	list reduces to 10th value. This is 73 to 73 has been locketed as the 10th value	A1 (4)
5/4)	$B_{1}C_{1} + B_{2}F_{2} = 26 + 30 = 56$	8
,	$B_1B_2 + EG = 65 + 18 = 83$	miA,
	$B_1 \in + B_2 \in = 41 + 42 = 83$	
	Kepeere B, D, DG, ISIN, HE	(4)
	houte e.g. FABIACEAEFDBIDHEDEF	Ъ, , , ,
	length = 129 + 56 = 185 km	miA (3)
(b)	Now only E and G one cold - repeat EF, FG only	BI
	length = 129+18	MIAI
	$z L_{r}7 km$	(3)
		10
1		

6689 Decision Mathematics D1 November 2004 Advanced Subsidiary/Advanced Level in GCE Mathematics

Question Number	Scheme	Marks
7 (a)	maximum (1=) ortex + 0.24 (accept 40x+204)	BI
	subject to X 46.5	
	$4 \le 8$ $x + y \le 12$	B5,4,3,2,30
	y ± 4 ×	(6)
	y = 0	, , , , , , , , , , , , , , , , , , ,
(6)	(6.5, 5.5) => 6500 type x and 5500 type y	mi A1 A1 (3)
10	P=0.4 (6500) + 0.2 (5500)	m
	$= \pm 3.700$	A1 (2)
		四
	· · · ·	

Question Number	Scheme	Marks
8(a)	x = 12 $y = 24$ $z = 19$	B3, 2, 1, 0 (3)
(b)	Allas Jord k la be given a unique representation usins errors	BI (1)
(c)	F - E - I - J	MIAI (2)
(6)	No effect, B has a total floot of 2	m1A1(2)
(e)	eg. "Total of activities = 54, 54 - 24 = 2.25 so 2 workers not engl · 54 - 2 = 27 hours per verter, so 2 vertees can not finish in 24 hours · Argument about the activities that need to be completed by E = 7 or 10	B 2,1,0 (2)
ربی	F E I K L M N A B C D	m i Ai Ai Ai Ai (5)
(વુ)	10 ector hours : E280	m AI (2)

6689 Decision Mathematics D1 November 2004 Advanced Subsidiary/Advanced Level in GCE Mathematics

EDEXCEL

.

· ,

190 High Holborn London WC1V 7BH

January 2005

,

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:	Decision Maths	Paper: D1	
Question Number	Scheme	Marks	· · · · · · · · · · · · · · · · · · ·
1)(a) (b)	$ \begin{array}{c} A & & & & & & \\ D & & & & & & \\ J & & & & & & \\ J & & & & & & \\ g. & S-3 = J-4 = P-6 & c.s. & S=3-J=4-P \\ end & T-2=A-1=D-S & c.s. & T=2-A=1-D \\ md & T-2=A-1=D-S & J=4 & P=6 & S=3 & T=2 \end{array} $	$= 6 \qquad \qquad \begin{array}{c} m_1 \\ \hline \\ \hline \\ m_1 \\ \hline \\ \hline \\ m_1 \\ \hline \\ \\ A_1 \end{array}$	(1) A1 (2) A1 (3)
2 (a)	D depends on And C, but E depends on A on H depends on G only, but Jord & depend on G	ndy BI and I BI	(2)
(b)	E = E = E = H	mi Al Al Al	(5) D
3) (9) (i iii (b) 5) FH, AD, DE, CE, (not DC), { EG}, (not AC), CF, HI, (not) AD, DE, EG, { EG}, CF, FH, HI, IJ stop. Stort off the tree with AB and FI, then apply h	FII) IJ _{jkp} MIAI MIAIA MIAIA B2,1,0	A1 (3) (3) (2) [8]

EDEXCEL

190 High Holborn London WC1V 7BH

January 2005

,

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:	
_	

Decision Maths

Paper: D1

Question Number	Scheme	Marks
4) (a)	E.g. $650 + 31 + 245 + 643 + 55 = 710 + 234 + 162 + 52 + 134 + 650 + 643 + 710 + 55 + 431 + 245 + 234 + 162 + 52 + 134 + 650 + 710 + 650 + 643 + 455 + 431 + 452 + 234 + 162 + 134 + 710 + 650 + 643 + 455 + 451 + 245 + 234 + 162 + 134 + 510 + 51000 + 5100$	MIAI AIN AIN AI (5)
···· (b)	Bin 1 710+245 Bin 3 643+162+134 Bin 5 431 Bin 2 650+234 Bin 4 455+452	MI AI AVAI (4)
(c) ⁴	1020 - 4.116 : 5 bins needed : ophmal	mi Aif (2) Ⅲ

EDEXCEL

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

EDEXCEL

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

S	u	bj	e	C	t:
			_	_	_

Decision Maths

Paper: D1

Question Number	Scheme	Marks
6)19	SADT-8 SCET-11 SBFT-9	B2,1,0
(b	$S = \frac{8}{3} + \frac{3}{5} + \frac{3}{5} + \frac{18}{5} + \frac{18}{7} + \frac{18}{7}$	B1 (3)
(c)	(i) $A \rightarrow 0$ $B \rightarrow 0$ $A \rightarrow 0$ $B \rightarrow 0$ $A \rightarrow 0$ $A \rightarrow 0$ $B \rightarrow 0$ $A \rightarrow 0$	m A (2) A A A (3)
	(ii) eg. II A 3 0 4 6 7 7 3 0 4 6 7 79 6 7 19 $19(iii) Max flow - min cut theoremCut AD, CD, DE, ET, ET, CF, BC, SB in {SACE}{BD FT}$	mi Al (z) mi Az, o (3)
(d)	I dea of a <u>directed</u> flow though a <u>system</u> of ones from <u>stor</u> practicul	BI (1) T4

EDEXCEL

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Decision Maths

Paper: D1

Question Number	Scheme	Marks
7) (a)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	B1 .
	$x + 2y + z \le 40$ $3x + 2y + z \le 50$ where $x, y, z \ge 0$	B3,2,1,0 (4)
(b)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BIN mi
(c)	chores connect pivot, divides R2 by 2 States connect row operations R1 - R2, R3-2R2, R4+80R2, R2-2 The solution found after one iteration has a clack of 10 wits of black perday	AI (4) B2,1,0 (2)
(d)	(i) $bv = x + y + z + r + s + t + telue$ $r = \frac{1}{2} + 0 + \frac{3}{2} + 1 + \frac{1}{2} + 0 + \frac{10}{10} + \frac{10}{20} + \frac{10}{10} + $	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mlAI MIAI (4)
	(ii) Not optimal, a negative value in papit row (iii) $X = 0$ $y = 16^{\frac{1}{2}}$ $Z = 6^{\frac{2}{3}}$ $P = \pm 1733.33$ $r = 0$, $S = 0$, $\pm = 10$	BI/ miAi/ Ai/ (4)

publication scheme.

edexcel

June 2005 6689 Decision D1 Mark Scheme

Question Number	Scheme	Marks
1)	E.g. 74 28 63 54 (54) 49 37 68 54 74 63 (54) 68 (54) 28 (49) 37 54 49 74 (63) 68 (54) (49) 28 (37) 63 37 74 (68) (63) (63) (19) (19) (28) 68 (28) (74) (68) (63) (19) (19) (19) (28) (28) $(28)74 (68) (63) (19) (19) (19) (28) (28) (28)74 (68) (63) (19) (19) (19) (28) (28) (28)74 (68) (63) (54) (19) (19) (28) (28) (28)74 (68) (63) (54) (19) (19) (28) (28) (28)74 (68) (63) (54) (49) (37) (28) (28) (28)74 (68) (63) (54) (28) (28)74 (68) (63) (54) (49) (37) (28) (28) (28)74 (68) (63) (54) (49) (37) (28) (28) (28)74 (68) (63) (54) (49) (37) (28) (28) (28) (28)$	m 1 A 1 A 1 A 1 (4) A 1 (4) A 1 (1) 5
2)(a) (b) (c)	e.g. AEBFCDA e.g. A b b b c c c c c c c c c c c c c c c c	MIA) (2) MIAIAI (3) B2,1/0(2) 団
3)(a) (b)	$AC + DF = 8 + 9 = 17 \in$ AD + CF = 15 + 16 = 31 AF + CD = 13 + 7 = 20 length = 77 + 17 = 94 km shortest orc is CD (7) so use A and F as end points	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

6689 Decision D1 June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

6689 Decision D1

June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

7) (a)
7) (a)
7) (b)
1, s and E are intraced a manufor of bird seed (in hg), such that folly have at the end of each week of the have maduup and sile the parts.
(b)

$$\frac{b \cdot v}{2} + \frac{x}{2} + \frac{y}{2} + \frac{r}{1} + \frac{s}{10} + \frac{r}{10} + \frac{s}{10} + \frac{r}{10} + \frac{r}$$

6689 Decision D1 June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

8 (a)
$$S_{51} - 4_{7}$$
, $S_{52} - 8_{7}$, $T, T - 5_{1}$, $T_{2}T - 7_{3}$ added 6 diigam 1
(b) $S_{51} \xrightarrow{a} o$, $S_{52} \xrightarrow{a} 3_{3}^{3}$, $T_{1}T \xrightarrow{a} 8_{1}$, $T_{2}T \xrightarrow{a} 2_{0}$
(c) $e.3$, $S_{54} = p.T, T = 2$
 $S_{54} \in e.7_{1}T = -10$
 $S_{54} \in e.6$ D.T, $T - L_{7}$
Maximum flax = 113
(d) $e.3$, 2_{4} , $\frac{1}{10}$, $\frac{10}{13}$, \frac

•

June 2005 6689 Decision D1 Mark Scheme

find scram

Question Number	Scheme	Marks
1) 01 m1	E.g. 74 28 63 54 54 49 37 68 54 74 63 54 68 54 28 49 37 54 49 74 63 68 54 49 37 54 49 74 63 68 54 49 28 37 63 37 74 68 63 4 49 37 28 68 (28) 74 68 63 54 54 49 37 28 sort complete 74 68 63 54 54 49 37 28 sort complete 74 68 63 54 54 49 37 28 sort complete 74 68 63 54 54 49 37 28 sort complete 74 68 63 54 54 49 37 28 sort complete 74 68 63 54 54 49 37 28 sort complete 74 68 63 54 54 49 37 28 sort complete 74 68 63 54 54 49 37 28 sort complete 74 68 63 54 54 49 37 28 sort complete	m I A I A I A I (4) A I (1) A I (1) 5
A I A I ∕ A I	1 st pan correct, next pivets correctly selected <u>consistently</u> 2 nd + 3 nd pames correct, pivets for next pan selected <u>consistently</u> each time. Penalise y (or list rewritten or all chosen as pivet) C.S.O. + stop statement (o.e.). Penalise non-sig no. error here. Penalise "sloppynen" here	fragmented hit here
2)(a) (b)	e.g. AEBFCDA e.g. A BFCDA	MIA) (2) MIAIAI (3)
رد)	States that one of these arcs (AF or EF)[Named], crosses at least one arc in each set. ENamed ars]	B 2, 1/0 (2) ①
(b) (c)	n: Each letter, present exactly once - aport from possibly stat + finish votex A, a correct route - Stats and finishes of A m: Cycle drawn as hexagon + at least 1 other arc added to diagraw AI at least 2 arcs added to hexagon AI C. a. O. B2 Good explanation AF or EF crones named "inside" or + named "outside" on B1/ AF or EF crones named or c. "close". "bood "sets B1. If I carries visit graph give bad	si si si si s

6689 Decision D1

June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

Q 1 Alternative comment ansu	rep			
(i) 74 28 63 54 <u>54</u>) 49 37 68	54		m i
74 (3) 68 54 28	54 (49) 37	63	49	AI
74 68 63 54) [4] 28 (37)	68	37 (54)	
TH BB () 154	37 28			AI /
(11) 74 28 63 (SL) 54	49 37 68	54		mł
74 3 54 68 54	28 (49) 37	63 49		AI
TL 68 63 54	[49] (28) 37	74 28	(54)	
74 3 54	37 28			AIN
		-		
(iii) 74 28 63 (S 4) 54	49 37 68	54		m
74 63 68 54 28	54 49 37	63, 54		AI
	28 (49) 37	74,49		
[74] (38)	[49] (28) 37	28 (68)	
	37 28	L.	57)	AIV
14 in list				
(IV) (74) 28 63 54 5	4 49 37 68	-74	mj	
[14] (28) 63 54 5	4 49 37 68	28		
63 54 54 4	9 37 68 [28]	63	AIV	
(6) (63 (54) 51	4 49 37	(68) 54		
68 54 5	49 37	54		
	4 (49) 37	49		
	4931	(77)	AI	

Ali, Sophie, Eur-Jing, Kater Morciana, Pelor, Rory, Bothy

37

28

74 68 63 54 54 49

		Q	mi	SRE	<u>L Q P</u>		(-	2 for	mR			
											mR	
(a)	74	28	63	54	SI7	49	37	68	54		m 1	
	28	54	49	37	54	74	63)	68	49	63	A1	
	28	37)	49	E.		63	74	68	37	68	(54)	
	28	37	ļ	54)	68)	74)			AIV	
											mil	
(b)	74	28	63	54	(54)	49	37	68	54		m)	
,	28	49	37	54	74	63	54	68	49, S	4	A)	
	28	37)	149		[54]	74	63)	68	37,6	3		
	28	137)				63	74	68)	68 (7	(8)		
	ι	,	1	,	1	ł	[68]	(74)			AIN	
				_				_			mR	
(c)	74	28	63 (5	」 - 「日	54	49	37	68	54		ر ۲۹	
	28	54	49 3		<u> </u>	74 (63)	68	54,62	3	AI	
	28	49	37 1	5 <u>4</u>] [<u>[63]</u> (74) (58	497	4	<i>*</i>	
	(28)	37)	4 <u>9</u>]				68 <u> </u> 7	14	28			
	28	37)	ł]		ſ	1	(AIV	
,		_		_				-	-		mr	
(d)	74	28 6	53 (51 	τ) <u>5</u> ι	+ ۱	493	7 6	8	S L _r		m i	
	28 (49 3	37 (54	זד (.	+ (6	3) 5	4 60	Ϋ́	49 63		A ,	
	(28)	37 <u>]</u>	<u>49</u>	(5)	È l∉	37	4) 68		28 , 74, (54)		
ę	(28) (31)	t l	[2]	t	16	8) [74	J			AIN	
		1										

(If condidates reverse list then restore full morts.) names or numbers

Belly, Rory, Reter, Kate+ Marciana, Eur-Jung, Jophie, Ali

3)(a)
A C + D F = 8 + 9 = 17 e
A D + C F = 15 + 16 = 31
A F + C D = 13 + 7 = 20
length = 77 + 17 = 94 km
(b)
Shortest orc is CP (7) to use A and F as end points
C 2, 1, 0 (1)
C 3 common 3 pairs of the odd vorkes (different) A co F
A1 2 pairs + "black" correct
A1 AU 3 pairs + brack correct 17 31 20
M1 77 + their shortest or plausilikit
A1 f C a 0 + km
Souther or plausilikit
A1 f C a 0 + km
Souther or plausilikit
A1 f C a 0 + km
C 2 f d a d to or the repeated and A + F staked as and points.
(b) 82 CD identified as the repeated and A + F staked as and points.
(c) 82 CD identified as the repeated and A + F staked as and points.
(b) 82 CD identified as the repeated and A + F staked as and points.
(c)
$$\frac{1}{2}$$

(c) $\frac{1}{2}$
(c)

6689 Decision D1 June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

`

•.

ì

7) (a)
$$r, s and E are innered a mark of bird seed (in hg), such these and prove (in how be at the ord of each used give is han making and sold the problem.
(b) $\frac{b \cdot v}{2} \frac{x}{5} \frac{y}{2} \frac{r}{1} \frac{r}{10} \frac$$$

6689 Decision D1 June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

٠.

Q7(6) notes

4

•

1)	Wrone	piret	chae	i v	col Z	2.(-	i judl <u>u</u>	,4)	Mo then for MIAZN
(a) (chourty	$\frac{b.V}{c}$	× - 1 - 1 - 1 - 1 - 1			<u>r</u> 0 1 0 0 0	-2 -2 -1 -4 -3 -4	L 2 0 1	value -10 15 15	$R_1 = 10R_2$ $R_2 = 4$ $R_3 = 3R_2$
(1)	r	- 22	-1	872 0			÷ 0	9750	Ry + 650 Rz
(b) (chims	$\frac{5}{2}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 13 - 13 - 13 - 13 - 213 - 21		, 1 0 0	> 0 1 0	1 2 m - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-60 -20 28	$R_{1} = -10R_{3}$ $R_{2} = -4R_{3}$ $R_{3} = -3$ $R_{4} = -4(r_{0}R_{1})$
2)	mis	REA	در	- UL	د دی	ۍ ۲	or c	el y	- 2 A morts if econed
(a)	b.v.	х		2	7	5	F	value	
	r	0	3	2	Ν	- 2.	0	20	R, -4 R2
	x	l	12	2	Ø	1-2	0	30	$R_{1} = 2$
	E	0	12.		0		١	30	$R_3 - R_2$
	P	0	-175	50	Ó	175	0	10500	R4 + 350R7
16)	b.v.	X	ч	تک	ſ	ک	Ł	Lake	
()	5	4 5	l	2		0	0	2.8	$R_1 = 5$
	S	(]	0	2		1	D	32	RZ - RI
	Ė	- 35	O		- 15	0	١	4	$R_3 - 2R_1$
	ſ	-70	D	50	70	0	Ο	9800	RG + 350R,

8 (a)
$$SS_{1} - 47_{1}$$
, $SS_{2} - 87_{1}$, $T_{1} - 51_{1}$, $T_{2}T_{1} - 73_{1}$ added to diagonan 1
(b) $SS_{1} \xrightarrow{\leftarrow} 47_{1}$, $SS_{2} \xrightarrow{\leftarrow} 33_{2}$, $T_{1} \xrightarrow{\rightarrow} 38_{1}$, $T_{2} \xrightarrow{\rightarrow} 32_{0}$
(c) $e \cdot 3.$, $SS_{2} \cdot A \rightarrow T_{1}$, $T_{1} \rightarrow 2$
 $SS_{1} \cdot C \in T_{1}$, $T_{1} \rightarrow 10_{1}$
 $SS_{1} \cdot C \in 0$ D T, $T_{1} - L_{1}$
(d) $e \cdot 3.$
 $f(A) = 113$
(e) $T_{1} = \frac{2}{13}$, $f(A) = 113$
(f) $f(A) = \frac{2}{13}$, $f(A) = \frac{2}{13}$,

ć

. .

If all 4 nos. zero the mo SEI) m) 4 ors added correctly + 4 numbers given (dissour 1 mbs) condone luck of onno AI C.a.O (dicson I only) penalise armos error here (b) mi 4 ores, 2 numbers and 2 anos & per arc Al c.a.o. (c) m) 2 correct routes + flows found (flow > 10 gets ma) clowly repeated from new ones.) (condure initia f. a. railes only if Alt all flows + results found to 17 more. A3 >3 flows + rents to 15 more on flow increased above 17 more. A2 >3 plans + routes to 11 more or A: at least 2 flas + mutes frend to 5 more. BI 113 C.a.O. (d) m1 consistent flow of 101+, complete clear (doent need to I from a) Al connect flow of 113 including anous (e) MI Flow of 113 + cut aftempted + max flow - min cut theorem refered to (sout of 4) Al cao (f) B2 are 4 bit there BI 2 cart of 4 there.

edexcel

January 2006 6689 Decision D1 Mark Scheme

Question Number	Scheme	Marks
1) (a)	There are 2 unmatched vertices on each side - the algorithm only matches one on each side periteration.	B1 (1)
(})	$\frac{e \cdot g}{=} = E - 3 = C - 1 \qquad C.S. E = 3 - C = 1$ F-5=A-6=D-2=B-4 C.S. F= S-A = 6-D = Z - B-4	(L) A (L) A (L)
	A = 6 B = 4 C = 1 D = 2 E = 3 F = 5	1 (m)A 1 (2) [7]
2) (a) (b)	AB, BG, BF $: GC, CD, DE$ {1256743} weight 337m A G F E 48 117 85 92 92 72 728 729 728	$m_{1}A_{1}A_{1}$ (3) B_{1} $B_{1} / (2)$ m_{1} A_{1}
(c)	A 55 63 132 58 63 124 E 63 124 E 124 E AB + CF = 48 + 160 = 208 AC + BF = 117 + 63 = 180 * AF + BC = 111 + 140 = 251 $E \cdot 9 \cdot ABFBGCACDEFDA$ 1engH = 802 + 180 = 982m	$ \begin{array}{c} A & (3) \\ m & A \\ A \\ A \\ (4) \\ A \\ M \\ A \\ M \\ A \\ (3) \\ \hline 15 \end{array} $

6689/01 Decision D1 January 2006 Advanced Subsidiary/Advanced Level in GCE Mathematics

3) β \mathcal{D} É C A Λ mi AI 1 1.618 -0.618 1-618 -0.618 ł (3) ١ n i AI/ 2 2.618 0.382 3 AI V 2 4.236 -.0-236 4 6.854 A 1 0.146 3 5 (5) - 0.090 5 11.089 AI Output: 1, 1, 2, 3, 5 (t)⁻ AIV 19 4) a) (i) A cut is a division of the vertices of a flow network into 2 sets, BI one containing the source (1) and the other containing the sink (1). (ii) A cut whose capacity is lost Bi (2) Bi, B2,0 C. = 1038 , Cz = 673 (b) (3)(214 (c) e.g. Α G O = saturated (318) (0) +37 MI (104) ulsory 208 (223) 5 4 (104) AI 236 (355) AI в [3] 251 251 E Second minment (\cdot) BI (d) AC, CD, 6F, FT (e) DE would not allow only firthe flas into EF B2,1,0 DE worded cross but minimum cuts - Dean tala extra flas, ET can accept it. Flor increases by 86 to 759 (accept either number) (2) 回

6689/01 Decision D1

January 2006 Advanced Subsidiary/Advanced Level in GCE Mathematics

6689/01 Decision D1 January 2006 Advanced Subsidiary/Advanced Level in GCE Mathematics

6689/01 Decision D1 January 2006 Advanced Subsidiary/Advanced Level in GCE Mathematics

June 2006 6689 Decision Maths D1 Mark Scheme

Question Number	Scheme	Marks
1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m i A i A i ✓ A i III
MI E AI F AI √ AI F	bubble sort - 1" pars complete - end term 45 or 64, consident L ->R on R -> 2 she inst 2 parses correct [condone "shrinkin" list Next 2 parses correct (if L + R next pan)] ned pars + final statement/rewrites list use mut in which list	He, Quick et al Mo
2) (a) (b)	A path from an unmatched vertex in X to an unmatched vertex in Y, which alternately uses area influction the metching. (where X and Y are district set of vertices.) e.g. $R-B=A-P$ c.s. $R=B-A=P$ s-F=m-c+D-K c.s. $s=F-m=c-D=K: A=P$ $D=K$ $H=Y$ $M=c$ $R=B$ $S=F$	B2,1,0 (2) m,A1 (2) m1A1 8 A ((3) [7]
(a) B2 A B1 Po (b) m1 Pa (A1 C.o (m1) Sec A1 C.o A1 Mus	good, complete answer stially correct - unmethoded to unmethod or ares infant in the methods one e the familie RIS bottom till 1.0 incl c.s. and path from remaining LH vety to remaining R H vety a.0 incl c.s. (remelie c.s only one) to from 2 correct paths cao	nagh "bal"

	Notes for quetion 1							
@ 1	Bubble 1	Z→L		,				
	5 2	48	50 4	5 64	47	53		1 [14
	64	52	48 S.	o Ls	53	47		- 10.0°
	64	53	52 4	8 50	- 45	47		A)
	64	AI						
		A)						
·			Misr	cads.	- sorting	in/2	ascendi	y orde
·····	(nete -	fcond	dates !	eitare !	it ful	1 cret	- is gain	ed)
	1 . 0							
	$L \rightarrow K (a$	ascend	ing - m	isread	<u>)</u>			(ḿ B)
	52	<u> </u>	50	4 <u>c 5</u>	64		53	ן רלו
- 1.7		50	45	52	47	53	64	
	48	45		47	52		64	AI
	43 	17	2r/	 50	<u>52</u>			<u></u>
		<u>, 7</u>	<u> </u>		 		64	<u>HI</u>
			Juli	(hence	- 4F J	at d	- St. 6	H 1
	B→L							
	52	48	50	45	62	47	52	me) mi
	45	52	48	50	47	64	53	
	45	47	52	48	50	53	64	A
and the last of th	45	47	48	52	50	53	64	
	45	47	4-8	50	52	53	64	AI
		N,	further a	horses -	list sor	teo		AI
	***.* 84.5ada an	5 P.4	/					(4-2 for mR)
		Add to be a second						
					and an and the second se		·	

. Notes for @ 2 (b)(i) B - B = A - PS-F=m-c=D-k(ii) R - B = A - F = M - C = D - KS-F=A-PA - P D 1 k (iii) S - F = m - c = D - kΞ Y H R-B=A-Pm ÷ Ċ R = B (iv) S-F=M-Y=H-B=A-P. 5 -F R - B = H - Y = m - c = D - k

3)(a) AC + EG = 44 + 35 = 79 mι AE + CE = 41 + 36 = 77 + AI AI AG+CE=36+45=81 A 1/(4) Repeat AD, DE, CF and FG BIJ(1) (b) length = 394 + 77 = 471 km (C) Since EG is the smallest chase to repeat this mi AU/(2) here stort and fish at A and C. \overline{n} (a) m1 3 pairs of their odd vertices (different) Al One pairing and total correct - is one line correct Al all 3 pairings and total correct. AV correct ares identified-must le 2 pairings to chare from AP DE (b) B1 471 (Km) 394 + thei shortest - must be 2 pairings to choose from. (c) m1 Identifies {EG} as smallest - or identifies their smalles from 2* pairings & botas AIN from 2+ pairings + to tak

as a manufacture of the second	
USICI I'll Hu top boxes completed -> increasing g	erevally
HI C.A.O.	
mI All Lover bares completed a decreasing ges	reveally
Al C.a.o	
(b) Al ca add 7 kit i mark	
(c) BV cao V hom diagram 1	top & bettom as both and
m) method correct or v correct answ (m	unt we generate working for MI
All cap V hom diagon	
(d) MI At least one of their critical paths + 3 n	en-critical stated including float
AI critical activities correct	
AIN 4 non-critical activities correct Normali	ingram mut include a lot as activity
AI Cao -on non-critical	
(e) BI Cao	
BZ CAO	
BI it are extra or one concision	
gor and or ore of any len	
	(1) (

6) (a)	7x + 10y + 10z + r = 3600	
	6x + 9y + 12z + 5 = 3600	132, ',0
	2x + 3g + 4z + c = z + c	0000
	P-35x-55y-602=0	182,0
(b)		
	b.V. x y z r s t value Rovers.	mi
	5 2 512 0 1 -516 0 600 RI-10R2	AI
	Z YZ 314 1 0 Y12 0 300 R2 - 12	mi
	E 0 0 0 0 -1/3 1 1200 R3-4-R2	AIN
	P -5 -10 0 0 5 0 1800 R++60R	RI
		(5)
	b.v. x y z. r S E value Roman	
	y 415 1 0 215 -1/3 0 240 R = 512	≥ mi
	Z - 1/10 0 1 -3/10 1/3 0 120 B2-34 BI	AIN
	E 0 0 0 0 - 1/3 1 1200 R3 stet	m
	P. 3 0 0 4 5/3 0 20400 Ru+10R	AI
		(4)
		6 -
(c)	$r = 20400 \times = 0 y = 240 z = 120$	M1 0.4818 a
	1-= 0 S= 0 E = 1200	H4,10,0
		[16]

	01	Jun	e 20	D6	Ø	6()	.) -	- W1000	i P	int choi	Co
			1000 - 1010 11								
(i) <u>10</u>	in Z	- colu	umn	1					MR Salah Marania		
b.v	. x	. 4		2	r	ک	F	Vali	лe	Ras Opp.	ma
ž	7.	• }			10	0	0	360		B, =10	m
S	- 12 5	- 3	0) –	5	1	0	~72 0		B2-12R,	AIN
E	-4-5-	- 1	0	~-	5	0	1	9	60	R3-48,	Bo
P	7	5	0	6	(>	0	21	640	R4+60R.	Mo
											mo
(;;) 4;	2 0	lumn									
											· · · · · · · · · · · · · · · · · · ·
b.v.	x	5	2	r	S	Ł	;	ratie	Ra	s op.	mo
٢	2	5	0	١	0	5		-24-00	Ri	-10 R3	m/
5	0	٥	0	0	١	-3	5	-3640	R2	-12R3	ATV
Z.	1/2	34	١	0	0	14		600	R	3-4	mo
ſ	-5	-10	0	0	0	15		36 000	By 1	60R3	Mo
										and the second s	

Q6(1) Misreads. DI June 2006 (i) chooses 7 is x column Ra ops. b. v. rative X. 2 10 7 ſ Ŀ 5 s 360 49 10 514 = o R, 77 ۱ ø £ 135 3 $\begin{pmatrix} 1 \\ -7 \\ 7 \end{pmatrix}$ -6 514 章 υ 5 о R2-6R, ł morts 1220 8 1371 = + - 2 7 Ł Ū С R3 -2R, i, P -5 - 10 5 R4+35R, O υ 18000 ٥ ialue b.v. Ras ops. Ł эc 4 f Z S 12 E. R1 - 10 R2 D } Ó 509.9125... x 407.93 7/24 -13 8 mI R2 - 7 150 0 ł 0 2 1240 0 R3 - = RE F 0 Ù 0 Aι ł 1367. 930 .. 35 -15 4 5 D B4 + 10 B2 φ ٥ ð 18030-612. m to my final tableau Ąi -2 for Misread (ii) chooses 10 in y column alue has Ops F b. v. r х Z S 10 1" 5 morts 石 l 0 R1 - 10 ļ 0 Ś 360 - 3 -9 70 3 asch S 0 į 0 Rz -9R, 360 - 10 - 70 0 0 ι R3 -3R, Ł Ŀ 1320 72 51 P 0 -5 0 0 19800 Ry +55R, Neek 4 mots to my final fabbain ۱ as shen -2 for Misread

6 (a) B2 First 3-equations c.a.o - 1 each error, but penalize only lenner pureports B1 magnialities get Bo
BZ Cao (BI for a "little st,")
(b) MI Correct pirot chosen and save attempt to deal with while res
Al pivot no correct c. a. a including b.v.
M1 correct res operations used (all 3) - at least 1 non-zers or 1 tem correct in each res. while res N => Mo
A V non-proted as comed is on emerin piret choice only
(5) B1 Ras operations correctly stated. (condone lack of R2 - 12) must be in from of new protection >m W correct pixet chosen, V from previous tableau, No negatives is value of previous tableau or mo)
AINCAO including b.v. but V from previous telles
- m) coment respective used (all 3) - at least mon-zero of fer correct in each res. while res 2 => Me
(c) M1 3 variables stated - must have completed b.v. and value columns (or 1's and zeros) con tedlean. Any negative A2/ all 7 correct
All at least 4 correct

7/a)B1 103 (ao
B1 177 (GO
B1 76 Cas
(b) m1 2 numbers added to each of the 4 ars
Alcao
(C) m 1 correct raites + flows found (flow > 15 get me) (why if clearly separated from the rest)
A3 all mites + flow found to 22 more
AZ 2000 voite + flas found to 12*
Al Los route + flas found & 6+
B1 98 (a 0
(d) mI consistent flow of 77 t, complete, clear (doesn't need to N from (c))
A1 C.a.o
(e) mi Flow of 98 + cut attempted + max flow mineut theorem referred & (3 at of 4)
Alcao

Mark Scheme (Results) January 2007

GCE

GCE Mathematics

Decision Mathematics D1 (6689)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

edexcel

January 2007 6689 Decision D1 Mark Scheme

1

Question	Scheme	Marks
I)	$\begin{bmatrix} \frac{1+10}{2} \end{bmatrix} = 6 \text{ Nicky} - \text{reject top d hist.}$ $\begin{bmatrix} \frac{7+10}{2} \end{bmatrix} = 9 \text{ Trevor} - \text{reject bottom d list}$ $\begin{bmatrix} \frac{7+8}{2} \end{bmatrix} = 8 \text{ Steve} - \text{reject bottom d list}$ $\begin{bmatrix} \frac{7+8}{2} \end{bmatrix} = 7 \text{ Preeby} - \text{reject}$ Nigel not in list.	MI AI AI AI I4]

Question Number	Scheme	Marks
2) (a) (b) (c)	G - 3 = J - 4 = L - 5 change statu: $G = 3 - J = 4 - L = 5$ Improved mattering: $E = 2$ G = 3 J = 4 L = 5 e.g. George and Y: Wen may both only be anigned b 3 Y - 3 = G - 2 = E - 4 = J - 1 change status: $Y = 3 - G = 2 - E = 4 - J = 1$	M 1 A 1 B 1 (3) B 1 (1) M 1 A 1
	complete making: E = 4 G = 2 J = 1 L = 5 Y = 3	AI (3)

			-								
12)(0)		b.v.	×	y	Z.,	٢	5	Value	Res opes		
4709	-	z	-12	0	l		O	20	$(R_1 + 4)$	mi Al	
		5	Ø	L _t	Ò	- 2	١	120	R2-2R1	MIAI	
		P	8	- 8	0	5	Ο	400	R3 + 20R1	AIJ (5)	
	<u>_</u>	_	5	150		400				BIJ (1)	
(b)	P +	- 8 x	- 89	7 7 7						BIL	
(c)	Not	optim	بند لم	nce the	reis	a negat	we num	ber in th	e profit now	Ī	
(C)	-										
(c)	 (b) P+8x-89 To repair of the profit row (c) Not optimal since there is a negative number in the profit row 										

	· · · · · · · · · · · · · · · · · · ·	
5(a)	e.g. Each edge contributes 2 to the sum of degrees, hence this sum must be even. Therefore there must be an even (or zero) number of vertices of odd degree Hence there can not be an odd number of vertices of odd degree	β2,1, 0 (2)
(b)	СD + FH = 200 + 220 = 420 * сF + DH = 180 + 380 = 560 сн + DF = 400 + 160 = 560	MIAI AI
(c)	fepeat CA, AD ond FH $length = 4180 + 420 f = 4600 m$	A1 (4) B1√(1) □
	۵	

ð .

,

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Decision Mathematics D1 (6689)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

June 2007 6689 Decision Mathematics Mark Scheme

Question Number	Scheme	Marks
1)	A graph is planar if it can be drawn in a plane in such a way that no two edges meet each other, except at a verter b which they are both incident	β2,1,0 [Σ]
2) ₍ a)	To obtain a complete matching the number of vertices on each side must be equal.	(32,),0 (2)
(b)	e.g. $L = 3 = H = 5 = J = 1a = A = 4$ c.s. $L = 3 = H = 5 = J = 1a = A = 4$	mi A I
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	AI (3)
(c)	H and L can now both only do 3. So a complete matching is not peozille (other answes peozille)	B2,1,0(₹) []
3) (a)	$A \qquad x \qquad y \qquad x even? \qquad x \neq 0?$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MAI
	378 12 N	mi
	6 504 Y 3 1008 N 1386 2 N	AIM
	1 2016 N 3402 0 Y	AL
	A = 3402	B1 (7)
(p)	The product scy.	(2,1,0 (2)

4) (a)	odd vertices B. D, F, H	
	BD + FH = 21 + 20 = 41	MIAI
	BF + DH = 19 + 20 = 39 *	AI
	BH + DF = 23 + 18 = 41	AI
	[Repeat BE, EF, DG and GH]	
	shortest route = 125 + 39 = 164 km	AIfts
(L)	Seek to keep the least pairing - DF/18 Therefore stort/finish at B and H.	BIJ BIJ
		D
5) (a)	MB, BE, MD, DC, CA	MIALAT
(h)	p (170) p A	
(0)	$E \qquad (260) \qquad B \qquad E \qquad (160) \qquad C \qquad $	ву (1)
	V = (130)	BI. (1)
(c)	Con i have a are is used that connects two vertices already	2.0.1
(d)	(A cycle is formed to each other in the tree) connected to each other in the tree)	B2,1,0
	Prints algorithm always selects are that bring a vertex not on the Dist into 14	- TT
	ъ	
		5

7) (a) $P = 2x - 4y - 3z = 0$ (o.e.)	B2,0 (2)	
(b) $12 \times + 4y + 5z \leq 246$ $9 \times + 6y + 3z \leq 153$ $5 \times + 2y - 2z \leq 171$	B 1 B 1 B 1 (3)	
(c) $ \frac{\boxed{basic variable x y z r s t Value}{r 12 4 5 1 0 0 246}}{r 3 0 1 0 153} \\ \frac{r 5 2 - 2 0 0 1 171}{P 2 - 4 - 3 0 0 0 0} $ $ \frac{\boxed{bv. x y z r s t Value Row operations}{r 6 0 3 1 - 273 0 1414} \\ \frac{r 6 0 3 1 - 273 0 1414}{P - 2 - 4 - 3 0 0 0 0} $ $ \frac{\boxed{bv. x y z r s t v late Row operations}{r 6 0 - 3 1 - 273 0 1414} \\ \frac{r 6 - 4 R 2}{P - 4 - 3 0 0 0 0} $ $ \frac{\boxed{bv. x y z r s t v late Row operations}{r 6 0 - 3 0 - 73 1 120 R 3 - 2R 3} \\ \frac{r 2 2 0 - 3 0 - 73 1 120 R 3 - 2R 3}{P - 4 0 - 1 0 273 0 102 R_{+1} + R_{2}} $ $ \frac{\boxed{bv. x y z r s t value operations}{r 2 2 0 1 73 - 274 0 448 R_{1} - 3} \\ \frac{r 2 2 0 1 73 - 274 0 448 R_{1} - 3}{P - 4 0 1 - 1 1 264 R_{3} + 3R_{1}} \\ \frac{r 2 2 0 1 73 - 274 0 150 R_{1} + R_{1}}{P - 6 0 0 1 - 1 1 264 R_{3} + 3R_{1}} \\ \frac{r 2 2 0 1 73 - 748 0 150 R_{1} + R_{1}}{P - 6 0 0 1 - 1 1 264 R_{3} + 3R_{1}} \\ \frac{r 2 2 0 1 73 - 748 0 150 R_{1} + R_{1}}{P - 6 0 0 1 - 1 1 264 R_{3} + 3R_{1}} \\ \frac{r 2 2 0 1 73 - 748 0 150 R_{1} + R_{1}}{P - 6 0 0 - 1 0 - 76 - 76 - 76 - 76 - 76 - 76 - 76 - $	$m(A)$ $m(A)$ $\beta(J)$ $m(A)$ $m(A)$ $m(A)$ (9) $m(A)$ (3)	
(e) (The Ehvid constraint) E = 0	B√ (1) [8]	

		_
8)(4)	82	BI
(b)	C,= 140, C2= 104,	BI, BI (3)
(c)	e.g. SBDFHJT-4 SBDFGT - 1 SBDFCHIT-2 SBDFCHJT-2 SBDEGT - 10	Mi A I A I A I (5)
(4)	Max flas - min cut theorem, flow is 104, mincut is C2	miAI (2)
	8) (a) (b) (c)	8) (a) 85 (b) $c_1 = 140$, $c_2 = 104$ (c) $e \cdot g$. S B D F H J T - 4 S B D F C H J T - 2 S B D F C H J T - 2 S B D E G T - 10 (d) max flas-min at theorem, flas is 104, minut i C_2

Mark Scheme (Pre-Standardisation) January 2008

GCE Mathematics (6689/01)

GCE

A PEARSON COMPANY

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

January 2008 6689 Decision Mathematics D1 Mark Scheme

÷

Question Number	Scheme	Marks
(a)(i)	A path from an unmakehed vertex in one set to an unmakehed vertex in the other set which alternately uses arcs not in / in the matching.	B1 B1 (2)
(1)	A one-to-one pairing of some elements of one set with the other set	β1 β1 (z)
(b)	e.g. $D-3=C-5$ change status $D=3-C=5$ E-2=A-1 change status $E=2-A=1$	mi A I mi A I
	A=1 B=4 C=5 D=3 E=2	AI (S) 9

Decision Maths D1 (6689) Jan 2008

- Q1(a)i 1B1 Unmatched to unmatched
 - 2B1 Alternate arcs not in/in [not vertices/nodes, not 'zigzag']
 - ii 3B1 One to- one
 - 4B1 Elements of one set with elements of the other.
 - (b) 1M1 'Path' starting at D or E, finishing at 1 or 5 or vice versa.
 - 1A1 A correct path including change status.
 - 2M1 'Path' from remaining unmatched (D/E) to unmatched (1/5) or v.v.
 - 2A1 A second correct path incl. c.s, but don't' penalise c.s. twice.
 - 3A1 Complete matching, must follow through from two correct paths.

Possible alternating paths and matchings

Path 1	Path 2	A	B	C	D	Ε
D-3-C-1	E-2-A-1-C-5	1	4	5	3	2
D-3-C-1	E-4-B-1-C-5	2	1	5	3	4
D-3-C-5	E-2-A-1	1	4	5	3	2
D-3-C-5	E-4-B-1	2	1	5	3	4
D-3-C-4-B-1	E-2-A-1-B-3-D-4-C-5	1	3	5	4	2
D-3-C-4-B-1	E-2-A-1-B-4-C-5	1	4	5	3	2
D-3-C-4-B-1	E-4-C-5	2	1	5	3	4
D-4-B-1	E-2-A-1-B-3-C-5	1	4	5	3	2
D-4-B-1	E-2-A-1-B-4-D-3-C-5	1	4	5	3	2
D-4-B-1	E-4-D-3-C-5	2	1	5	3	4
D-4-B-3-C-1	E-2-A-1-C-5	1	3	5	4	2
D-4-B-3-C-1	E-4-D-3-B-1-C-5	2	1	5	3	4
D-4-B-3-C-5	E-2-A-1	1	3	5	4	2
D-4-B-3-C-5	E-4-D-3-B-1	2	1	5	3	4
E-2-A-1	D-3-C-5	1	4	5	3	2
E-2-A-1	D-4-B-3-C-5	1	3	5	4	2
E-4-B-1	D-3-C-5	2	1	5	3	4
E-4-B-1	D-4-E-2-A-1-B-3-C-5	1	3	5	4	2
E-4-B-3-C-1	D-3-B-1-C-5	2	1	5	3	4
E-4-B-3-C-1	D-3-B-4-E-2-A-1-C-5	1	4	5	3	2
E-4-B-3-C-1	D-4-E-2-A-1-C-5	1	3	5	4	2
E-4-B-3-C-5	D-3-B-1	2	1	5	3	4
E-4-B-3-C-5	D-3-B-4-E-2-A-1	1	4	5	3	2
E-4-B-3-C-5	D-4-E-2-A-1	1	3	5	4	2

Question Number	Scheme	Marks
2(a) (b)	E.G. 18 20 11 7 17 (15) 14 21 23 16 9 11 7 (1) 9 15 18 20 17 (21) 23 16 11 (7) 9 114 18 20 (17) 16 (21) (23) 11 (7) 9 114 16 (17) 18 (20) 123 11 (9) 10 16 (17) 18 (20) 123 19 (10) 16 (17) 18 (20) 123 19 (10) 16 (18) (20) 123 19 (10) 16 (18) (20) 123 19 (10) 16 (18) (20) 123 19 (10) 16 (17) 18 (20) 123 19 (10) 17 (18) (20) 123 19 (10) 123 19 (10) 17 (18) (20) 123 19 (10) 12	m I A I A I A I A I A I (5) M I A I A I A I A I (4)
(د)	107m	B1(1)
		10

- Q2(a) 1M1 Pivot chosen & 2 sublists, one < pivot, one > pivot
 - 1A1 1st pass correct, all of the next set of pivots chosen, and done so consistently (condone 1 term lists)
 - **1A1ft** as above for 2^{nd} pass.
 - 1A1ft All correct, follow through, pivots must be chosen consistently
 - (b) 1M1 Using Kruskal CF then GI
 - 1A1 First 4 arcs chosen correctly
 - 2A1 All arcs chosen correctly (condone lack of rejection here)
 - 3A1 All correct including rejections
 - (c) **B1** cao

Alter	Alternative correct solutions										
<u>Midd</u> 18 11 7 7	le left 20 (7) 11 (1) 9	11 14 9 11 11	7 9 9 14 14	17 [15] 15	13 18 6 16 16	14 20 17 17 17	21 17 18 18 18 18	23 21 20 20 20 20	16 23 21 21 21 21 21	9 16 23 23 23 23	
First B D D D T V 7	20 7 9 9 9 9 9		7 15 17 15 14 14	17 14 15 14 15 15	$ \begin{array}{c} 15 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ \end{array} $	14 9 16 17 17 17	$\frac{21}{18}$	23 20 20 20	16 21 21 21 21 21	9 23 23 23 23 23 23	
Misr	eads – I	oose las	t 2 A n	narks ea	rned (N	OTE: I	Reversi	ng list	at end	remove	s MR)
Midd 18 18 23 23 23 23	le right 20 20 (21)) 21	11 17 18 18 20 20	7 21 20 18 18	17 23 17 17 17 17	$ \begin{array}{c} 15 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ \end{array} $	$\frac{14}{15}$	$\begin{array}{c} 21\\ 11\\ 14\\ 1\\ 14\\ 1\\ 14 \end{array}$	$23 \\ 7 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11$	16(4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	9 9 9 7 7 7	
Midd 18 18 18 21 23 23	lle left 20 20 20 23 21 21	$ \begin{array}{c} 11 \\ 17 \\ 21 \\ 20 \\ - \\ 20 \\ 20 \end{array} $	7 21 23 18 18 18	17 23 17 17	(5) 16 (6) 16	14 15 15	21 11 11 14 14 14		16 14 9 9 9 9 9	9 9 17 1 7	
First 1800 103 123 23	20 21 23 21 21 21	$ \begin{array}{c} 11\\ 23\\ \hline 20\\ \\ 20\\ \\ 20\\ \end{array} $	7 18 18	17	15 7 15 15 16 16 16	14 17 14 14 15 15	$21 \\ 15 \\ 16 \\ 16 \\ 14 \\ 14$	23 14 11 11	16 16 000 9	9 9 9 7 7 7 7 7	

Question Number	Scheme	Marks
3 (a)	CO + FG = 0.7 + 0.6 = 1.3 * CF + DG = 0.5 + 0.9 = 1.4 CG + DF = 1.1 + 0.5 = 1.6 repeat CD and FG	MIAI AI
(ط)	A possible route e.g. A COCFGFDGEDAEBA length: 11 + 1.3 = 12.3 km i) Each are has to be traversed twice ii) 2 × 11 = 22 km	AI AI (6) BI (1) B2,0 (2) 9
	Q3(a) 1M1 3 distinct pairings of their 4 odd nodes 1A1 one line correct (condone missing total) 2A1 2 lines correct including totals 3A1 All three lines correct including totals 4A1 15 letters, repeat CD and FG, start/finish A, A to G there. 5A1ft 11+ thier minimum (b)i 1B1 cao 'twice' probably the trigger ii 2B1 22 3B1 22km	

January 2008 Advanced Subsidiary/Advanced Level in GCE Mathematics

Q6(a) 1B1 Close, bod, probably 2 out of three points below

2B1 Good complete answer, 2 'sets'; source and sink seperated; vertices

- (b) 1M1 Two numbers on each arc 1A1 cao
- (c) 1M1 1 correct route and a flow value stated. Any flow>9 gets M0
 - 1A1 1 valid route with valid flow
 - 2A1 2 distinct valid routes with valid flows found to >3
 - 3A1 All routes and flows found to 13
- (d) 1M1 Consistent flow pattern >55
 - 1A1 cao
- (e) 1B1 cao
- (f) 1M1 Depends flow of 67, 3 out of 4 words in theorem, cut attempted 1A1 valid cut

Routes

Do not use: SA or BC

Increases needed for solution:

(NOTE treat back flows as negative e.g. EG+9 and GE+1 gives EG+8)

SB + 13	AC+9	AD+1	BA+10	BF+3
CE+9	DG+1	EG+8	EH+4	GT+9

and the second second

÷.

Question Number	Scheme	Marks
7) (a)	y >, 2 x	B 2, 1, 0 (2)
(b)	x + 2y = 160 correctly drawn y = 60 correctly drawn and distinctive (strict inequality) Shading correct	B4,3,2,1,0 (4) B1V (1)
(c)	R correct	
(d)	Profit line added or fount testing seen correctly done 70 boxes identified	m I A I A I (3)
e)	(P=) 1-2x + 1.4y	BI (1)
(f)	Profit line added or Point testing seen correctly done (32, 64) identified.	m 1 A 1/A 1: A 1 (1-]
(9)	£128.00	AIN (1)

- 2 (or 1/2) one correct side, condone any inequality or equals, or bod Q7(a) 1B1 2B1 cao
 - (b) **1B1** Errors to look for: y = 60 distinct in some way 2B1 t-1 e,e. lines correct to ≤ 1 small square 1 at axis 3B1 Labels on lines 4B1 _ Ruler
 - (c) 1B1ft R 'correct', ft their lines, but shading needs to be correct
 - (d) 1M1 Attempt at profit line (axis to axis) or point testing 2 points Profit line correct (within 1 sm square) or three points tested correctly 1A1 2A1
 - cao
 - (e) 1B1 cao
 - Attempt at profit line (axis to axis) or point testing 2 points (f) 1M1 1A1ft correct but ft their R and their (e) for profit line and 3 point testing
 - correct (so a mark for correct with no need to ft) 2A1
 - 3A1
 - cao (32, 64) only
 - (g) 4A1 cao follow through (ignore units).

Mark Scheme (Results) Summer 2008

GCE

GCE Mathematics (6689/01)

June 2008 6689 Decision Mathematics D1 Mark Scheme

Question Number	Scheme	Marks
Q1 (a)	$\frac{502}{100} = 5.02$ so 6 tapes.	M1 A1 (2)
(b)	Bin 1: 29, 52 Bin 5: 47, 38 Bin 2: 73 Bin 6: 61	M1
	Bin 3: 87 Bin 4: 74 Bin 4: 74	A1
		A1 (3)
(c)	Bin 1: 87 Bin 4: 61, 38 Bin 2: 74 Bin 5: 52, 47 Bin 3: 73 Bin 6: 41, 29	M1
		A1
	Nadau	A1 (3)
	(a) $1M1: (502 \pm 40) \div 100$ (maybe implicit)	Total 8
	1A1: cao 6 tapes	
	 (b) 1M1: Bin 1 correct and at least 8 values put in bins 1A1: Condone one error, (e.g. extra, omission, 'balanced'swap). 2A1: All correct 	
	 (c) 1M1: Bin 1 correct and at least 8 values put in bins 1A1: Condone one error, (e.g. extra, omission, 'balanced'swap). 2A1: All correct 	

Question Number	Scheme	Marks					
Q2 (a)	G-5 = W-3 change status $G = 5 - W = 3$						
(b)	A - no matchE = 2G = 5R = 4W = 3						
(c)	e.g. R is the only person who can do 1 and the only person who can do 4	B 2, 1, 0 (2)					
(d)	A - 2 = E - 3 = W - 4 = R - 1 change status $A = 2 - E = 3 - W = 4 - R = 1$						
	A = 2 E = 3 G = 5 R = 1 W = 4						
	 Notes: (a) 1M1: Path from G to 3 1A1: CAO including change status (stated or shown), chosen path clear. (b) 2A1: CAO must ft from stated path (c) 1B1: Correct answer, may be imprecise or muddled (bod gets B1) but all nodes refered to must be correct. 2B1: Good, clear, correct answer. (d) 1M1: Path from A to 1 1A1: CAO including change status (stated or shown) but don't penalise twice. Chosen path clear. 1A1: CAO must ft from stated path 						
	Misread (remove last two A or B marks if earned.) A-2=E-3 c.s. $A=2-E=3$ Matching $A=2$, $E=3$, $R=4$ W = 5 Then G-5=W-4=R-1 c.s. $G=5-W=4-R=1Matching A=2, E=3, G=5, R=1, W=4$						

Question Number	Scheme	Marks
Q4 (a)	 e.g. Prims starts with any vertex, Kruskal starts with the shortest arc. It is not necessary to check for cycles when using Prim. Prims adds nodes to the growing tree, Kruskal adds arcs. The tree 'grows' in a connected fashion when using Prim. Prim can be used when data in a matrix form. Other correct statements also get credit. 	B 2, 1, 0 (2)
(b)(i)	e.g. AC, CF, FD, DE, DG, AB.	M1, A1, A1 (3)
(ii)	CF, DE, DF, not CD, not EF, DG, not FG, not EG, AC, not AD, AB. [18, 19, 20, not 21, not 21, 22, not 23, not 24, 25, not 26, 27]	M1, A1, A1 (3)
	Notes: (a) 1B1: Generous one correct difference. If bod give B1 2B1: Generous two distinct, correct differences.	Total 8
	 (b) 1M1: Prim's algorithm – first three arcs chosen correctly, in order, or first four nodes chosen correctly, in order. 1A1: First five arcs chosen correctly; all 7 nodes chosen correctly, in order 	
	 2A1: All correct and arcs chosen in correct order. 2M1: Kruskal's algorithm – first 4 arcs selected chosen correctly. 1A1: All six non-rejected arcs chosen correctly. 2A1: All rejections correct and in correct order and at correct time. 	
	B E 19 D 22 G	
	25 20 C 18 F	

Question Number	Scheme	Mark	s					
Q5 (a)	x = 9, y = 11 AC DC DT ET							
(b)								
(c)	36	B1	(1)					
(d)	$C_1 = 49, C_2 = 48, C_3 = 39$	B1,B1	,B1 (3)					
(e)	e.g. SAECT	B1	(1)					
(f)	maximum flow = minimum cut cut through DT, DC, AC and AE	M1 A1	(2)					
		Total	11					
	Notes: (a) 1B1: cao (permit B1 if 2 correct answers, but transposed) 2B1: cao (b) 1B1: correct (condone one error – omission or extra) 2B1: all correct (no omissions or extras) (c) 1B1: cao (d) 1B1: cao 2B1: cao 3B1: cao (e) 1B1: A correct route (flow value of 1 given) (f) 1M1: Must have attempted (e) and made an attempt at a cut. 1A1: cut correct – may be drawn. Refer to max flow-min cut theorem three words out of four.							

Question Number			S	Scheme						Marks
Q6					1					
	b.v	Х	У	Z	R	S	t	valu	ue	
(a)	r	4	$\frac{7}{3}$	$\frac{5}{2}$	1	0	0	64	1	
	s	1	3	0	0	1	0	16	5	
	t	4	2	2	0	0	1	60)	
	Р	-5	$-\frac{7}{2}$	-4	0	0	0	0		
				<u> </u>	4					
	b.v	Х	у	Z	R	s	t	value	Row ops	
	r	0	$\frac{1}{3}$	$\frac{1}{2}$	1	0	-1	4	R ₁ - 4R ₃	M1 A1
	s	0	$\frac{5}{2}$	$-\frac{1}{2}$	0	1	$-\frac{1}{4}$	1	$R_2 - R_3$	M1 A1ft A1
	X	1	$\frac{1}{2}$	$\frac{1}{2}$	0	0	$\frac{1}{4}$	15	R ₃ ÷4	
	Р	0	-1	$-\frac{3}{2}$	0	0	$\frac{5}{4}$	75	$R_4 + 5R_3$	
	b.v	х	у	Z	R	s	t	value	Row ops	
	Z	0	$\frac{2}{3}$	1	2	0	-2	8	$R_1 \div \frac{1}{2}$	M1 A1ft
	s	0	$\frac{17}{6}$	0	1	1	$-\frac{5}{4}$	5	$R_2 + \frac{1}{2}R_1$	M1 A1
	X	1	$\frac{1}{6}$	0	-1	0	$\frac{5}{4}$	11	$R_3 - \frac{1}{2}R_1$	(9)
	Р	0	0	0	3	0	$-\frac{7}{4}$	87	$R_4 + \frac{3}{2}R_1$	(-)
(b)										
	There is	still a n	egative r	number	in the p	orofit ro	ow.			B1 (1)
										Total 10

Question Number	Scheme	Marks					
Q7 (a)	v = 16 $w = 25$ $x = 23$ $y = 20$ $z = 8$	B3,2,1,0 (3)					
(b)	BCGLMQ						
(c)	Float on $H = 23ft - 19 - 3 = 1$ Float on $J = 25 - 22 - 2 = 1$	B1 B1 (2)					
(d)							
(e) (f)	e.g • At time 23 ½ activities L, I, J and N must be taking place • At time 13 ½ or 14 ½ activities C, D, E and F must be taking place • A workers needed.	M1 A1 A1 (4) B2,1,0 (2) B2,1,0 (2) Total 14					

Question Number	Scheme	Marks
Q8	Maximise (P=) $0.2 a + 0.15 b$ or $20 a + 15 b$ o.e.	B1 B1 (2)
	Subject to $a+b \le 800$ $a \ge 2b$ $50 \le b \le 100$ $a \ge 0$	B1 B2,1,0 B1 B1 (5) Total 7
	 Notes: 1B1: 'Maximise' 2B1: ratio of coefficients correct 3B1: cao 4B1: ratio of coefficients of <i>a</i> and <i>b</i> correct. 5B1: inequality correct way round i.e. □<i>a</i>≥□<i>b</i> 6B1: cao accept < - accept two separate inequalities here 7B1: cao Penalise < and > only once with last B mark earned Be generous on letters a, b, A, B, x, y etc and mixed, but remove last B mark earned if inconsistent or 3 letters in the ones marked. 	

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6689/01)

January 2009 6689 Decision D1 Mark Scheme

Question Number	Scheme	Mark	(S
4 (a)	Alternating path $B-3 = A-5$ change status $B = 3-A = 5$	M1 A1	
	A = 5 $B = 3$ $C = 2$ $D = 1$ $E = 6$ F unmatched	A1	(3)
(b)	e.g. C is the only person able to do 2 and the only person able to do 4. Or D, E and F between them can only be allocated to 1 and 6.	B2, 1, 0) (2)
(c)	Alternating path $F - 6 = E - 1 = D - 2 = C - 4$ change status $F = 6 - E = 1 - D = 2 - C = 4$	M1 A1	
	A = 5 $B = 3$ $C = 4$ $D = 2$ $E = 1$ $F = 6$	A1	(3)
			[8]
	 Notes: (a) 1M1: Path from B to 5. 1A1: Correct path including change status 2A1: CAO my matching, may be drawn but if so 5 lines only and clear. (b) 1B1: Close, a correct relevant, productive statement bod generous 2B1: A Good clear answer generous (c) 1M1: Path from F to 4. No ft. 1A1: Correct path penalise lack of change status once only 2A1: CAO may be drawn but if so 6 lines only and clear 		

Question Number	Scheme	Mark	ĸs
5 (a)	Odd vertices C, D, E, G $CD + EG = 17 + 19 = 36 \leftarrow$ CE + DG = 12 + 25 = 37 CG + DE = 28 + 13 = 41 Length = 543 + 36 = 579 (km)	B1 M1 A1 A1 A1ft	(5)
(b)	 CE (12) is the shortest So repeat CE (12) Start and finish at D and G Notes: (a) 1B1: cao (may be implicit) 1M1: Three pairings of their four odd nodes 1A1: one row correct 2A1: all correct 3A1ft: 543 + their least = a number. Condone lack of km (b) 1M1ft: Identifies their shortest from a choice of at least 2 rows. 1A1ft: indicates their intent to repeat shortest. 2A1ft: correct for their least. 	M1 A1ft A1ft	(3) [8]

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6689/01)

June 2009 6689 Decision Mathematics D1 Mark Scheme

Question Number	Scheme	Mar	ks
Q1 (a)	AD, AE, DB; DC, CF	M1 A1; A1	(3)
	F E D C A B C	В1	(1)
(c)	Waight 505 (law)	B1	(1)
	weight 595 (km)		[5]
	Notes:(a) 1M1: Using Prim – first 2 arcs probably but condone starting from another vertex.1A1: first three arcs correct 2A1: all correct.(b) 1B1: CAO(c) 1B1: CAO condone lack of km.Apply the misread rule, if not listing arcs or not starting at A. So for M1 (only)Accept numbers across the top (condoning absence of 6)Accept full vertex listing Accept full arc listing starting from vertex other than A[AD AE DB DC CF]{1 4 5 2 3 6} BD AD AE CD CFBD AD AE CD CF{3 1 5 2 4 6} BD AD EBCFDA AE DB CC F{2 4 5 1 3 6} CD AEBFDA AE DB CC F{2 4 5 1 3 6} CDAEBFDA AE DB CC F{2 4 5 3 1 6} FC CD AD AE BDFC CD AD AE BD{4 6 2 3 5 1} FCDAEB		

Question Number	Scheme	Marl	<s< th=""></s<>
Q2 (a)	$\frac{230}{60} = 3.8\dot{3}$ so 4 needed	M1 A1	(2)
(b)	Bin 1: 32 17 9 Bin 2: 45 12 Bin 3: 23 28 Bin 4: 38 16 Bin 5: 10	M1 A1 A1 A1	(4)
(c)	e.g. Bin 1: 32 28 Bin 2: 38 12 10 Bin 3: 45 9 Bin 4: 23 17 16	M1 A1 A1	(3) [9]
	 Notes: (a) 1M1: Their 230 divided by 60, some evidence of correct method 3.8 enough. 1A1: cso 4. (b) 1M1: Use of first fit. Probably 32, 45 and 17 correctly placed. 1A1: 32, 45, 17, 23, 38 and 28 placed correctly 2A1: 32, 45, 17, 23, 38, 28, 16, 9 placed correctly. 3A1: cao (c) 1M1: Use of full bin – at least one full bin found and 5 numbers placed. 1A1: 2 full bins found Eg [32+28 and 38+12+10] [23+28+9 and 16+12+32] [32+28 and 23+16+12+9] [38+12+10 and 23+28+9] 2A1: A 4 bin solution found. Special case for (b) misread using first fit decreasing. Give M1A1 (max) Bin 1: 45 12 Bin 2: 38 17 Bin 3: 32 28 		
	Bin 4: 23 16 10 9 M1 for placing 45, 38, 32, 28 and 23 correctly A1 for cao.		

Question Number		Scheme	Marl	٢S
Q3				
((a)	H-2 = M-5 = R-4 change status to give	M1 A1	
((b)	C = 3 (E unmatched) $H = 2$ $M = 5$ $R = 4$ $S = 1$	A1	(3)
((c)	e.g. C is the only person who can do 3 and the only person who can do 6	B1	(1)
		e.g. $E - 5 = M - 2 = H - 1 = S - 3 = C - 6$ change status to give	M1 A1	
		C = 6 $E = 5$ $H = 1$ $M = 2$ $R = 4$ $S = 3$	A1	(3)
				[7]
		Notes:		
		1A1: correct path and change status		
		2A1: CAO must follow from correct path.		
		(b) 1B1: CAO or e.g reference to E 5 M 2 H 1 S		
		(c) IMI: Path from E to 6 1A1: CAO do not penalise lack of change status a second time		
		2A1: CAO must follow from a correct path		

Question Number	Scheme				
Q4	$\frac{M}{J} \stackrel{J}{E} \stackrel{K}{K} \stackrel{H}{H} \stackrel{B}{B} \stackrel{L}{L} \stackrel{P}{N} \stackrel{N}{D} \stackrel{B}{B} \stackrel{B}{B} \stackrel{M}{J} \stackrel{E}{E} \stackrel{K}{K} \stackrel{H}{H} \stackrel{L}{L} \stackrel{P}{N} \stackrel{N}{D} \stackrel{H}{H} \stackrel{B}{B} \stackrel{E}{E} \stackrel{D}{D} \stackrel{H}{H} \stackrel{M}{J} \stackrel{K}{K} \stackrel{L}{L} \stackrel{M}{P} \stackrel{N}{N} \stackrel{D}{E} \stackrel{K}{H} \stackrel{F}{J} \stackrel{K}{K} \stackrel{L}{L} \stackrel{M}{M} \stackrel{N}{P} \stackrel{P}{(J)} \stackrel{N}{N} \stackrel{B}{B} \stackrel{D}{D} \stackrel{E}{E} \stackrel{H}{H} \stackrel{J}{J} \stackrel{K}{K} \stackrel{L}{L} \stackrel{M}{M} \stackrel{N}{N} \stackrel{P}{P} \stackrel{(M)}{(M)}$ $Sort completed$ $\left[\frac{1+10}{2}\right] = 6 Katie reject \ left$ $\left[\frac{7+10}{2}\right] = 9 Natsuko reject \ right$	M1 1A1 2A1ft 3A1ft 4A1 M1 1A1 2A1ft	(5)		
	$\begin{bmatrix} 2 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 7 \end{bmatrix}$ Louis name found	3A1	(4)		
	 Notes: (a) 1M1: quick sort, pivots, p, identified, two sublists one p. If choosing one pivot only per iteration, M1 only. 1A1: first pass correct, next pivot(s) chosen consistently. 2A1ft: second pass correct, next pivot(s) chosen consistently 3A1ft: third pass correct, next pivot(s) chosen consistently 4A1: cso List re-written or end statement made or each element been chosen as a pivot. (b) 1M1: binary search, choosing pivot rejecting half list. If choosing J M1 ony 1A1: first two passes correct, condone 'sticky'pivots here, bod. 2A1ft: third pass correct, pivots rejected. 3A1: cso, including success statement. Special case for (b) – If just one letter out of order, award maximum of M1A1A0A0 		[9]		

Question Number	Scheme	Marks
Q5 (a)	CD + EG = 45 + 38 = 83 $CE + DG = 39 + 43 = 82 \leftarrow$ CG + DE = 65 + 35 = 100 Repeat CE and DG Length 625 + 82 = 707 (m)	M1 1A1 2A1 3A1 4A1ft 5A1ft (6)
	DE (or 35) is the smallest So finish at C. New route $625 + 35 = 660$ (m)	M1 A1ft A1ft=1B1 (3) [9]
	 Notes: (a) 1M1: Three pairings of their four odd nodes 1A1: one row correct 2A1: two rows correct 3A1: three rows correct 4A1ft: ft their least, but must be the correct shortest route arcs on network. (condone DG) 5A1ft: 625 + their least = a number. Condone lack of m (b) 1M1: Identifies their shortest from a choice of at least 2 rows. 1A1ft: ft from their least or indicates C. 2A1ft = 1Bft: correct for their least. (Indept of M mark) 	

Question Number		Scheme	Mar	ks
Q7	(a)	$7x + 5y \le 350$	M1 A1	(2)
	(b)	$y \le 20$ e.g. make at most 20 small baskets $y \le 4x$ e.g. the number of small (y) baskets is at most 4 times the number of large baskets (x). {E.g if $y = 40$, $x = 10$, 11, 12 etc. or if $x = 10$, $y = 40$, 39, 38}	B1 B1	(2)
	(c)	(see graph next page) Draw three lines correctly Label R	B3,2,1, B1	,0 (4)
	(d)	(P=) 2x + 3y	B1	(1)
	(e)	Profit line or point testing. $x = 35.7 \ y = 20$ precise point found. Need integers so optimal point in R is (35, 20); Profit (£)130	M1 A1 B1 B1;B1	(5) [14]
		Notes: (a) 1M1: Coefficients correct (condone swapped <i>x</i> and <i>y</i> coefficients) need 350 and any inequality 1A1: cso. (b) 1B1: cao 2B1: cao, test their statement, need both = and < aspects. (c) 1B1: One line drawn correctly 2B1: Two lines drawn correctly. 2B1: Two lines drawn correctly. Check (10, 40) (0, 0) and axes 4B1: R correct, but allow if one line is slightly out (1 small square). (d) 1B1: cao accept an expression. (e) 1M1: Attempt at profit line or attempt to test at least two vertices in their feasible region. 1A1: Correct profit line or correct testing of at least three vertices. Point testing: (0,0) P= 0; (5,20) P = 70; (50,0) P = 100 $\left(35\frac{5}{7},20\right) = \left(\frac{250}{7},20\right) P = 131\frac{3}{7} = \frac{920}{7}$ also (35, 20) P = 130. Accept (36,20) P = 132 for M but not A. Objective line: Accept gradient of 1/m for M mark or line close to correct gradient. 1B1: cao – accept <i>x</i> co-ordinates which round to 35.7 2B1: cao 3B1: cao		

Mark Scheme (Results) January 2010

GCE

Decision Mathematics D1 (6689)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2010 Publications Code UA022719 All the material in this publication is copyright © Edexcel Ltd 2010

January 2010 6689 Decision Mathematics D1 Mark Scheme

estion nber			Scheme							Marks
b)	Question 1(b) Alternative Solutions									
	Path 1 Path 2 Matching									
		1 atti 1	1 atti 2	Α	В	С	D	Ε	F	
	1	B-3-C-1-A-2	F-3-B-4-D-5-E-1-C-6	2	4	6	5	1	3	
	2	B-3-C-1-A-2	F-3-B-4-D-5-E-2-A-1-C-6	1	4	6	5	2	3	
	3	B-3-C-1-A-2	F-4-D-5-E-1-C-6	2	3	6	5	1	4	
	4	B-3-C-1-A-2	F-4-D-5-E-2-A-1-C-6	1	3	6	5	2	4	
	5	B-3-C-4-D-5-E-1-A-2	F-3-B-4-C-6	2	4	6	5	1	3	
	6	B-3-C-4-D-5-E-1-A-2	F-4-C-6	2	3	6	5	1	4	
	7	B-3-C-6	F-3-B-4-D-5-E-1-A-2	2	4	6	5	1	3	
	8	B-3-C-6	F-3-B-4-D-5-E-2	1	4	6	5	2	3	
	9	B-3-C-6	F-4-D-5-E-1-A-2	2	3	6	5	1	4	
	10	B-3-C-6	F-4-D-5-E-2	1	3	6	5	2	4	
	11	B-4-D-5-E-2	F-3-C-6	1	4	6	5	2	3	
	12	B-4-D-5-E-2	F-4-B-3-C-6	1	3	6	5	2	4	
	13	B-4-D-5-E-1-A-2	F-3-C-6	2	4	6	5	1	3	
	14	B-4-D-5-E-1-A-2	F-4-B-3-C-6	2	3	6	5	1	4	
	15	F-3-C-1-A-2	B-3-F-4-D-5-E-1-C-6	2	3	6	5	1	4	
	16	F-3-C-1-A-2	B-3-F-4-D-5-E-2-A-1-C-6	1	3	6	5	2	4	
	17	F-3-C-1-A-2	B-4-D-5-E-1-C-6	2	4	6	5	1	3	
	18	F-3-C-1-A-2	B-4-D-5-E-2-A-1-C-6	1	4	6	5	2	3	
	19	F-3-C-4-D-5-E-1-A-2	B-3-F-4-C-6	2	3	6	5	1	4	
	20	F-3-C-4-D-5-E-1-A-2	B-4-C-6	2	4	6	5	1	3	
	21	F-3-C-6	B-3-F-4-D-5-E-1-A-2	2	3	6	5	1	4	
	22	F-3-C-6	B-3-F-4-D-5-E-2	1	3	6	5	2	4	
	23	F-3-C-6	B-4-D-5-E-1-A-2	2	4	6	5	1	3	
	24	F-3-C-6	B-4-D-5-E-2	1	4	6	5	2	3	
	25	F-4-D-5-E-2	B-3-C-6	1	3	6	5	2	4	
	26	F-4-D-5-E-2	B-4-F-3-C-6	1	4	6	5	2	3	
	27	F-4-D-5-E-1-A-2	B-3-C-6	2	3	6	5	1	4	
	28	F-4-D-5-F-1-A-2	B-4-F-3-C-6	2	1	6	5	1	3	

- (a) B1 cao preferably just 4 lines, but accept if unambiguous.
- (b) M1 attempt at a path from B or F to 2 or 6
 - A1 correct path including change status
 - M1 attempt at a second path from F or B to 6 or 2
 - A1 correct path including change status (do not penalise change status twice)
 - A1 correct matching; must follow from 2 correct paths

Question Number	Scheme					
Q2(a)	 (i) All pairs of vertices connected by a path, but not describing complete graph. (ii) No cycles (iii) All nodes connected (accept definition of minimum spanning tree) 					
Q2(b)	Kruskal's (algorithm)	B1	(1)			
Q2(c)(i)	L-O 56 Using Prim. first 2 correct L-C 60 C-N 62 O-S 63 Next 2 S-P 43 C-Y 156 Finish Total length 440 (miles) Total	M1 A1 A1 A1 =B1				
Q2(c)(ii)	Tree correct	B1	(5)			
			[9]			

Q2(c)

Accept weights as indicating arcs.

Misreads - award M1 A0 A0 for these:

- Vertices, not edges given L O C N S P Y
- Numbers across top, edges either incorrect or not given: 3 1 4 2 6 5 7.

Also accept these, misreading And not starting at L - again M1A0A0

Started at	Minimum arcs	nodes	Numbers
С	CL,LO,CN,	CLONSPY	1243657
Ν	NC,CL,LO,OS,SP,CY	NCLOSPY	2314657
0	OL,LC,CN,OS,	OLCNSPY	3241657
Р	PS,SO,OL,LC,CN.CY	PSOLCNY	5463127
S	SP.SO,	SPOLCNY	5463217
Υ	YC,CL,LO,CN,	YCLONSP	2354761

Clear method to include at least 1 update		
(look at E, F, G or H)	M1	
BCDE correct	A1	
FGH correct	Alft	
Route ADEGH	A1	
Total time 36 Minutes	A1ft	(5)

Question Number	Scheme	Marks
Q3(b)	Odd nodes are A, B, C, H	M1
	AB + CH = 15 + 25 = 40	A1
	AC + BH = 19 + 22 = 41	A1
	AH + BC = 36 + 22 = 58	A1
	(40 is the shortest, repeating AB and $CF + FG + GH$)	
	Must be choosing from at least two pairings for this last mark Shortest time = $167 + 40 = 207$ minutes. 167 + their shortest	A1ft (5)
		[10]

Question Number					Scł	neme						М	arks
Q4(a)	0.6	4.0	2.5	3.2	0.5	2.6	0.4	0.3	4.0	1.0	2.6		
	4.0	3.2	4.0	<u>2.6</u>	0.6	2.5	0.5	0.4	0.3	1.0	3.2 0.4	M1	
	4.0	4.0	<u>3.2</u>	2.6	0.6	2.5	0.5	1.0	<u>0.4</u>	0.3	4.0 0.5	A1	
	4.0	<u>4.0</u>	<u>3.2</u>	<u>2.6</u>	0.6	2.5	1.0	0.5	<u>0.4</u>	<u>0.3</u>	2.5	A1ft	
	<u>4.0</u>	<u>4.0</u>	<u>3.2</u>	2.6	2.5	0.6	1.0	0.5	<u>0.4</u>	<u>0.3</u>	1.0	A1ft	
	<u>4.0</u>	<u>4.0</u>	<u>3.2</u>	2.6	2.5	<u>1.0</u>	0.6	0.5	<u>0.4</u>	<u>0.3</u>		A1 c	SO
													(5)
Q4(b)		L	ength 1:	4									
		L	ength 2:	4									
		L	ength 3:	3.2	0.6			left col	umn &	1.0 in plac	ce	M1	
		L	ength 4:	2.6	1.0	0.4				0.6 & 0.5		A1	
		L	ength 5:	2.5	0.5	0.3				0.4		A1	
										All correc	ct (c.s.o)	A1	
													(4)
Q4(c)	19.1/	4 = 4.77	75 so 5 le	engths no	eeded, a	accept to	otal is 1	9.1m, o	r refer to	o 0.9 'spar	re.	B1	
			Yes, t	he answ	ver to (b) does u	se the r	ninimur	n numbe	er of bins.		DB1	
													(2)
													[1]
													[[]]

Notes for Q4(a)

1M1 Pivot, p, chosen. List sorted, >p, p. p. If only choosing 1 pivot per iteration M1 only

1A1 1^{st} pass correct and chosen next **two** pivots correctly for sublists >1

2A1ft 2^{nd} pass correct and chosen next **two** pivots correctly for sublists >1

3A1ft 3^{rd} pass correct and next pivot for sublist >1 chosen correctly.

4A1 cso.

Misread in part (a)

- If they have misread a number **at the start of part (a), so genuinely miscopied** and got for example 0.1 instead of 1.0 then mark the whole question as a misread removing the last two A or B marks earned. This gives a maximum total of 9.
- If they misread their own numbers **during the course of part (a)** then count it as an **error in part (a)** but mark parts (b) and (c) as a misread. So they would lose marks in (a) for the error and then the last two A or B marks earned in (b) and (c) giving a maximum of 8 or maybe 7 marks depending on how many marks they lose in (a).

The most popular misread is the one listed above – where 1.0 has changed to 0.1 giving

4.0 4.0 3.2 2.6 2.5 0.6 0.5 0.4 0.3 **0.1** at the end of (a) for this one (b) and (c) are:

(b) Length 1: 4 Length 2: 4 Length 3: 3.2 0.6 0.1 Length 4: 2.6 0.5 0.4 0.3 Length 5: 2.5

(c) 18.2/4 = 4.55 so 5 bins, or total is 18.2 or 1.8 'spare' Yes answer in (b) uses the minimum number of bins. Alternate solutions for Question 4

ſ

Choos	ing mid	dle left	t							
0.6 0.6 <u>4.0</u> 4.0 4.0 4.0 4.0	4.0 4.0 <u>4.0</u> 4.0 4.0 4.0	2.5 2.5 3.2 3.2 3.2 3.2 3.2	3.2 <u>3.2</u> 0.6 <u>2.6</u> 2.6 2.6	0.5 2.6 <u>2.5</u> 2.5 2.5 2.5 2.5	2.6 4.0 2.6 <u>0.6</u> <u>1.0</u> 1.0	0.4 1.0 1.0 0.6 0.6	0.3 0.5 0.5 0.5 0.5 0.5	4.0 <u>0.4</u> 0.4 0.4 0.4 0.4	1.0 0.3 <u>0.3</u> 0.3 0.3 0.3	(pivot 0.5) (pivots 3.2, 0.4) (pivots 4.0, 2.5) (pivots 0.6)
Choos <u>0.6</u> <u>4.0</u> 4.0 4.0 4.0 4.0 4.0 4.0 4.0	ing first 4.0 2.5 <u>2.5 3.2</u> <u>4.0</u> 4.0	2.5 3.2 3.2 2.6 3.2 3.2 3.2	3.2 2.6 2.6 <u>2.6</u> <u>2.6</u> 2.6	0.5 4.0 4.0 2.5 2.5 2.5	2.6 1.0 1.0 <u>1.0</u> 1.0 1.0	0.4 0.6 0.6 0.6 0.6 0.6	0.3 <u>0.5</u> 0.5 0.5 0.5 0.5	4.0 0.4 <u>0.4</u> 0.4 0.4 0.4	1.0 0.3 0.3 <u>0.3</u> 0.3 0.3	(pivot 0.6) (pivots 4.0, 0.5) (pivots 2.5, 0.4) (pivots 3.2)
OR (al <u>0.6</u> <u>4.0</u> <u>4.0</u> 4.0 4.0 4.0 4.0 4.0 4.0 4.0	ternate 4.0 2.5 4.0 4.0 4.0 4.0 4.0	e choosi 2.5 3.2 <u>2.5</u> <u>3.2</u> 3.2 3.2 3.2 3.2	ing first 3.2 2.6 3.2 2.6 <u>2.6</u> 2.6) 0.5 4.0 2.6 2.5 2.5 2.5	2.6 1.0 <u>1.0</u> 1.0 1.0	0.4 0.6 0.6 0.6 0.6 0.6	0.3 <u>0.5</u> 0.5 0.5 0.5	4.0 0.4 <u>0.4</u> 0.4 0.4 0.4	1.0 0.3 0.3 <u>0.3</u> 0.3 0.3	(pivot 0.6) (pivots 4.0, 0.5) (pivots 2.5, 0.4) (pivots 3.2)
Quest	ion 4 so	orting i	into AS	CENDIN	G ordei	r (full n	narks if	then r	everse	ed, otherwise MISREAD)
Middle 0.6 <u>0.4</u> <u>0.3</u> 0.3 0.3	e left 4.0 0.3 0.4 0.4 0.4	2.5 0.5 0.5 0.5 0.5	3.2 0.6 0.6 <u>0.6</u> 0.6	<u>0.5</u> 4.0 <u>2.5</u> 1.0 1.0	2.6 2.5 2.6 2.5 2.5	0.4 <u>3.2</u> 1.0 <u>2.6</u> 2.6	0.3 2.6 3.2 3.2 3.2	4.0 4.0 <u>4.0</u> 4.0 4.0	1.0 1.0 4.0 4.0 4.0	(pivot 0.5) (pivot 0.4, 3.2) (pivot 2.5, 4.0) (pivot 0.6)
Middle 0.6 0.6 0.3 0.3 0.3 0.3	e right 4.0 2.5 0.4 0.4 0.4 0.4	2.5 0.5 0.6 0.5 0.5	3.2 <u>0.4</u> 2.5 0.6 0.6	0.5 0.3 <u>0.5</u> <u>2.5</u> <u>1.0</u>	<u>2.6</u> 1.0 1.0 1.0 2.5	0.4 2.6 2.6 2.6 2.6	0.3 4.0 3.2 3.2 3.2	4.0 <u>3.2</u> 4.0 4.0 4.0	1.0 4.0 <u>4.0</u> 4.0 4.0	(pivot 2.6) (pivot 0.4, 3.2) (pivot 0.5, 4.0) (pivot 2.5) (pivot 1.0)
First (* 0.6 0.5 0.4 0.3 0.3 Eirct (*	1) 4.0 0.4 0.3 0.4 0.4 0.4	2.5 0.3 0.5 0.5 0.5	3.2 0.6 0.6 0.6 0.6	0.5 <u>4.0</u> <u>2.5</u> 1.0 1.0	2.6 2.5 3.2 2.5 2.5	0.4 3.2 2.6 <u>3.2</u> 2.6	0.3 2.6 1.0 2.6 3.2	4.0 4.0 4.0 4.0 4.0	1.0 1.0 4.0 4.0 4.0	(pivot 0.6) (pivot 0.5, 4.0) (pivots 0.4, 2.5) (pivots 3.2)
0.6 0.5 0.4 0.3 0.3	4.0 0.4 0.3 0.4 0.4	2.5 0.3 0.5 0.5	3.2 0.6 0.6 0.6 0.6	0.5 <u>4.0</u> <u>2.5</u> 1.0 1.0	2.6 2.5 3.2 2.5 2.5	0.4 3.2 2.6 <u>3.2</u> 2.6	0.3 2.6 1.0 2.6 3.2	4.0 4.0 4.0 4.0 4.0	1.0 1.0 4.0 4.0 4.0	(pivot 0.6) (pivot 0.5, 4.0) (pivots 0.4, 2.5) (pivots 3.2)

Question Number	Scheme							
Q5								
	S	Т	R	R>0?	Output			
(a)	25000	0	17000	у		Line 1		
		3400				Line 2		
			7000			Line 3		
				у		Line 4		
		4450				Line 5		
			-5000			Line 6		
				n		Line 7		
					4450			
	-							
		•						
						Lines 1 & 2:	MIAI	
						Lines 3-7:	MIAI	
							A 1	
						Output correct:	AT	(5)
								(5)
(h)	Tor on C	25 000 : a C44	50				R1ft	
(0)	Tax on L	25 000 IS £44	-50				DIII	(1)
								(1)
(c)	Toy from	$m = f_{000}$					D1	
(C)	Tax free	sum = 18000	•				Ы	(1)
								(1)
								[7]

Question Number	Scheme									
Q6(a)	The dotted line represents a dummy activity.									
	It is n	ecessary because C a	nd D depend only on	A, but E depends on A and B.	B1	(2)				
Q6(b)										
		Activity	Immediately preceding activity							
		А	-							
		В	-							
		С	А							
		D	А	To this point	B1					
		Е	A,B							
		F	C (A)	For E & F, accepting correct "extra"	B1					
		G	C, D, E							
		H F, G Last two rows, correct only,		B1	(3)					

Q6(d) Critical activities: B, E, G, H

B1

(2)

Critical path: 16 days B1ft

Question Number	Scheme	Mark	(S
Q7(a)	$x + 2y \le 12$ (150x + 300y ≤ 1800)	M1A1	(2)
Q7(b)	$\begin{array}{r} 0.9x + 1.2y \leq 9 \\ \rightarrow 3x + 4y \leq 30 (*) \end{array}$	M1 A1 cso	(2)
Q7(c)	(You need to buy) at least 2 large cupboards.	B1	(1)
Q7(d)	Capacity C and 140%C		
	So total is $Cx + \frac{140}{100}Cy$	M1	
	Simplify to $7y + 5x$ (*)	A1cso	(2)
Q7(e)	Graph:		
	$y \ge 2$ $0.9x + 1.2y \le 12$ ($3x + 4y \le 30$) $x + 2y \le 12$ ($150x + 300y \le 1800$) Lines labelled & drawn with a ruler	B1 B1 B1 B1	
	Shading, Region identified	B1, B1	(6)
Q7(f)	Consider points and value of $5x + 7y$: Or draw a clear profit line $(7,2) \rightarrow 49 \text{ or } (7 \frac{1}{3},2) \rightarrow 50 \frac{2}{3}, \text{ or } (7.3,2) \rightarrow 50.5$ $(6,3) \rightarrow 51$	M1A1	
	$\begin{array}{cccc} (0,6) & \rightarrow & 42 \\ (0,2) & \rightarrow & 14 \end{array}$	A1	
	(0,2) \rightarrow 14 Best option is to buy 6 standard cupboards and 3 large cupboards.	A1	(4)
			[17]

Question 7 notes

- (a) 1M1 correct terms, accept = here, accept swapped coefficients.
- 1A1 cao does not need to be simplified.
- (b) 1M1 correct terms, must deal with cm/m correctly, accept = here.
- 1A1 cso **answer given**.
- (c) 1B1 cao 'at least' and '2' and 'large'.
- (d) 1M1 1.4 or $5 \times 40\%$ maybe 5+2 seen, they **must** be **seen** to engage with 140\% in some way.
 - 1A1 cso **answer given.**

Lines should be within 1 small square of correct point at axes.

- (e) 1B1 correctly drawing y = 2.
 - 2B1 correctly drawing 3x + 4y = 30 [0.9x + 1.2y = 12]
 - 3B1 correctly drawing x + 2y = 12 [150x + 300y = 1800], ft only if swapped coefficients in (a) (6,0)

(2,8).

These next 3 marks are only available for candidates who have drawn at least 2 lines, including at least one 'diagonal' line with negative gradient.

- 4B1 Ruler used. At least 2 lines labelled including one 'diagonal' line.
- 5B1 Shading, or R correct, b.o.d. on their lines.
- 6B1 all lines and R correct.

(f) 1M1 At least 2 points tested **or** objective line drawn with correct m or 1/m, minimum intercepts 3.5 and

2.5.

- 1A1 2 points correctly tested **or** objective line correct.
- 2A1 3 points correctly tested or objective line correct and distinct/labelled.
- 3A1 6 standard and 3 large, accept (6,3) if very clearly selected in some way.

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA022719 January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) Summer 2010

GCE

GCE Decision Mathematics D1 (6689/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA023711 All the material in this publication is copyright © Edexcel Ltd 2010

Summer 2010 Decision Mathematics D1 6689 Mark Scheme

Question Number	Scheme	Marks
Q1 (a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 A1ft A1cso 4
(b)	1 st choice $\left[\frac{1+9}{2}\right] = 5$ Nicky, reject 1 - 5 2 nd choice $\left[\frac{6+9}{2}\right] = [7.5] = 8$ Tom, reject 8 - 9 3 rd choice $\left[\frac{6+7}{2}\right] = [6.5] = 7$ Sharon, reject 7 4 th choice 6 Paul name found	M1A1 A1
	Notes: (a) 1M1: quick sort, pivots, p, chosen and two sublists one <p< td=""><td>4 Total 8</td></p<>	4 Total 8
	<pre>one >p. 1A1: first pass correct and next pivots chosen correctly/consistently. 2A1ft: second pass correct, next pivots correctly/consistently chosen. 3A1: all correct, cso. (b) 1M1: binary search on what they think is a alphabetical list, choosing pivot, rejecting half list. 1A1: first pass correct, condone 'sticky' pivot here, bod generous</pre>	
	2A1: second pass correct, pivot rejected.3A1: cso.Note: If incorrect list in (a) mark (b) as a misread.	

Q1 Alternative solutions

Mid	dle rig	ht								
Η	V	L	А	Ν	J	S	Т	Р	(N)	M1
Η	L	Α	J	Ν	V	S	Т	Р	(A T)	A1
A	Η	L	J	Ν	S	Ρ	Т	V	(L P)	A1ft
A	Η	J	L	Ν	Р	S	Т	V	(J)	
A	Η	J	L	N	P	S	T	V		A1 cso
							list so	rted		
Mid	dle lef	ť								
Η	V	L	А	Ν	J	S	Т	Р	(N)	M1
Η	L	А	J	Ν	V	S	Т	Р	(L S)	A1
Η	Α	J	L	Ν	Ρ	S	V	Т	(A V)	A1ft
A	Η	J	L	Ν	Р	S	Т	V	(H)	
Ā	Η	J	L	N	P	S	Τ	V		A1 cso
Fire										
H	V	L	А	Ν	I	S	Т	Р	(H)	M1
A	н	Ī	L	N	J	S	Ť	P	(II) (V)	A1
Ā	H	T I	N	J	S	Ť	P	V	(L)	
Ā	H	J	Ĺ	N	Ŝ	Ť	P	V	(\mathbf{N})	A1ft
A	Η	J	L	N	S	Т	Р	V	(S)	
A	Н	J	L	N	Ρ	S	Т	V		A1 cso
		<u> </u>			āā		1i			

Question Number	Scheme	Marks
Q2 (a)	DE GF DC $\begin{cases} not CE \\ BD \end{cases}$ EG (not EF not CF) AC (not AB) GH	M1 A1 A1 3
(b)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B2, 1, 0 2
(c)	AC CD DE BD GE GF GH	M1 A1 A1
(d)	Weight: 174	B1 1
	 Notes: (a) 1M1: Kruskal's algorithm – first 4 arcs selected chosen correctly. 1A1: All seven non-rejected arcs chosen correctly. 2A1: All rejections correct and in correct order and at correct time. (b) 1B1: condone two (double) errors 2B1: cao (c) 1M1: Prim's algorithm – first four arcs chosen correctly, in order, or first five nodes chosen correctly, in order. {A,C,D,E,B} 1A1: First six arcs chosen correctly or all 8 nodes chosen correctly, in order. {A,C,D,E,B,G,F,H} 2A1: All correct and arcs chosen in correct order. (d) 1B1: cao 	Total 9
	Starting atMinimum arcs required for M1NodesorderAAC CD DE DBACDEB(GFH)15234(768)BBD DE DCBDEC(GFAH)(7)1423(658)CCD DE DBCDEB(GFAH)(7)4123(658)DDE DCDE DCCDEB(GFAH)(7)4123(658)	
	D DE DC DB DECB(GFAH) (7)4312(658) E ED DC DB EDCB(GFAH) (7)4321(658) F FG GE ED DC DB FGEDCB(AH) (7)654312(8) G GF GE ED DC DB GFEDCB(AH) (7)654321(8) H HG GF GE HGFE(DCBA) (8765)4321	

Question Number	Scheme	Marks
Q3 (a)	e.g. total weight is 239, lower bound is $\frac{239}{60} = 3.98$ so 4 bins.	M1 A1 2
(b)	Bin 1 : 41Bin 4 : 36Bin 2 : 28 + 31Bin 5 : 32Bin 3 : 42Bin 6: 29	M1 A1 A1 3
(c)	Full Bins : $28 + 32$ $31 + 29$ The other 3 items (42, 41, 36) require 3 separate bins	M1 A1 2
(d)	There are 5 items over 30. No two of these 5 can be paired in a bin, so at least 5 bins will be required.	B2, 1, 0 2
		Total 9
	 Notes: (a) 1M1: Any correct statement, must involve calculation 1A1: cao (accept 4 for both marks) (b) 1M1: Bins 1 and 2 correct and at least 6 values put in bins 1A1: Bins 1,2,3 and 4 correct. 2A1: All correct (c) 1M1: Attempt to find two full bins and allocate at least 6 values 1A1: cao (d) 1B1: Correct argument may be imprecise or muddled (bod gets B1) 2B1: A good, clear, correct argument.(They have answered the question 'why?') Misread in (b) First Fit Decreasing Bin 1: 42 Bin 2: 41 Bin 3: 36 Bin 4: 32 28 Bin 5: 31 29 (Remove up to two A marks if earned – so M1 max in (b) if first 4 bins correct.) 	

Question Number	Scheme	Marks
Q4 (a)	BC + EG = 10.4 + 10.1 = 20.5 smallest BE + CG = 8.3 + 16.1 = 24.4 BG + CE = 14.9 + 11.9 = 26.8	M1 A1 A1 A1
	So repeat tunnels BA, AC and EG	A1
(b)	Any route e.g. ACFGDCABDEGEBA Length = 73.3 + their 20.5 = 93.8km	B1 M1 A1 3
(c)	The new tunnel would make C and G even. So only BE would need to be repeated. Extra distance would be $10 + 8.3 = 18.3 < 20.5$ [91.6 < 93.8] So it would decrease the total distance.	B1 DB1 2
	 Notes: (a) IM1: Three pairings of their four odd nodes 1A1: one row correct 2A1: two rows correct 3A1: all correct 4A1: correct arcs identified (b) 1B1: Any correct route (14 nodes) 1M1: 73.3 + ft their least, from a choice of at least two. 1A1: cao (c) 1B1: A correct explanation, referring to BE and relevant numbers (8.3, 12.2, 2.2, 18.3,81.3, 91.6) maybe confused, incomplete or lack conclusion -bod gets B1 2B1D: A correct, clear explanation all there + conclusion (ft on their numbers.) 	Total 10

Question Number	Scheme	Marks
Q5 (a)	e.g. G-3 = E-2 = A-4 = S-6 Change status $G = 3 - E = 2 - A = 4 - S = 6$	M1 A1
	Improved matching A = 4 (C unmatched) $E = 2$ $G = 3$ $J = 5$ $S = 6$	A1 3
(b)	e.g. Both C and J can only be matched to 5 Both 1 and 6 can only be done by S	B2, 1, 0 2
(c)	C-5 = J-4 = A-2 = E-6 = S-1 Change status $C = 5 - J = 4 - A = 2 - E = 6 - S = 1$	M1 A1
	Complete matching A = 2 $C = 5$ $E = 6$ $G = 3$ $J = 4$ $S = 1$	A1 3
	 Notes: (a) 1M1: Path from G to 6 or 1 1A1: CAO including change status (stated or shown), chosen path clear. 2A1: CAO must ft from stated path, diagram ok (b) 1B1: Correct answer, may be imprecise or muddled (bod gets B1) all relevant nodes should be referred to and must be correct, but condone one (genuine) slip. 2B1: Good, clear, correct answer. (c) 1M1: Path from C to 1 or 6 [whichever they didn't use before.] 1A1: CAO including change status (stated or shown), chosen path clear. (Don't penalise change status twice.) 2A1: CAO must ft from stated path, diagram ok Alt (a) G - 3 = E - 2 = A - 4 = S - 1 (b) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 (c) C - 5 = J - 4 = A - 2 = E - 6 	Total 8

Notes:

- (a) 1B1: CAO
- (b) 1B1: 3x = 2y passing through 1 small square of (0,0) and (12, 18), but must reach x = 15

2B1: 5x+4y=80 passing through 1 small square of (0, 20) and (16, 0) (extended if necessary) but must reach y = 6

- 3B1: R CAO (condoning slight line inaccuracy as above.)
- (c) 1B1: Accept expression and swapped coefficients. Accept 5x + 8y for 1 mark 2B1: CAO (expression still ok here)
- (d) 1M1: Profit line [gradient accept reciprocal, minimum length line passes through (0, 2.5) (4, 0)] **OR** testing 2 points in their FR near two different vertices.
 - 1A1: Correct profit line **OR** 2 points correctly tested in correct FR (my points)

e.g

$(7\frac{3}{11}, 10\frac{10}{11}) = 12363\frac{7}{11}$	or	(7,11) = 12300			
	(8	$(3,10) = 12\ 000$			
	(8	(3,11) = 12800			
$(11\frac{1}{5}, 6) = 10400$	or	(11, 6) = 10300			
$(15, 6) = 12\ 300$	or	(15,7) = 13100			
$(15, 22\frac{1}{2}) = 25\ 500$	or	(15, 22) = 25 100			
(11,7) = 11100					

2M1: Seeking integer solution in correct FR (so therefore no y = 6 points) 1B1: (11,7) CAO 2B1: £11 100 CAO

Notes for Q8

- (a) 1M1: Top boxes completed generally increasing left to right.
 - 1A1: CAO.
 - 2M1: Bottom boxes completed generally decreasing right to left.
 - 2A1: CAO.
- (b) 1B1: Critical activities cao.
- (c) 1M1: At least 10 activities placed, at least five floats. Scheduling diagram gets M0.
 1A1: my critical activities correct.
 - 2A1: condone one error on my non-critical activities.
 - 3A1: my non-critical activities correct.
- (d) 1B1: A correct statement, details of either time (7<time<9, 8<day<10), or activities, bod gets B1. Allow 1 B mark (only) on ft from their 12 activity, 7 float diagram.
 2B1: A correct, complete full statement details of time and activities.

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA023711 Summer 2010

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) January 2011

GCE

GCE Decision Mathematics D1 (6689/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2011 Publications Code UA026247 All the material in this publication is copyright © Edexcel Ltd 2011

January 2011 Decision Mathematics D1 6689 Mark Scheme

Question Number	Scheme	Marks
(b)	Shortest route: A B C E G F H	B1
		(1)
(c)	Shortest route: H F G E C	B1ft
	Length of shortest route: $21 - 7 = 14$ miles	B1ft
		(2)
		[8]
	Notes	
(a)	 1M1: Smaller number replacing larger number in the working values at C or D or G or E or F or H. (generous – give bod) 1A1: All values in boxes A, B and C correct. (Condone missing wv at A) (Allow order of labelling starting at 0) 2A1ft: All values in boxes D, E and G (ft) correct. Penalise order of labelling errors just once, G must be labelled before F. 3A1: All values in boxes F and H correct 4A1ft: Follow through from their H value, condone lack of units here. 	
(b)	1B1: CAO (either way round)	
(c)	1B1ft: only ft if their shortest route goes through C, in which case accept their route reversed up to C (either way round) 2B1ft: only ft if their shortest route goes through C, in which case accept their route length (or final value at H) -7.	

Question Number	Scheme	Marks
2. (a)	Lower bound $=\frac{173}{50} = 3.46 \text{ so } 4 \text{ bins}$	B1 B1 (2)
(b)	Bin 1: 23 + 11 + 10 Bin 4: 35 Bin 2: 29 + 14 Bin 5: 17 Bin 3: 34 Bin 5: 17	M1 A1 A1 (3)
(c)	e.g. 23 29 11 34 10 14 35 17 29 23 34 11 14 35 17 10 29 34 23 14 35 17 11 10 34 29 23 35 17 14 11 10 34 29 35 23 17 14 11 10 34 35 29 23 17 14 11 10 35 34 29 23 17 14 11 10 The source of the second	M1 A1 A1ft A1cso (4)
(d)	Bin 1: 35 + 14Bin 3: 29 + 17Bin 2: 34 + 11Bin 4: 23 + 10	M1 A1 A1cso (3) [12]
Alt (c)	23 29 11 34 10 14 35 17 35 23 29 11 34 10 14 17 35 34 23 29 11 14 10 14 17 35 34 23 29 11 17 10 14 A1 35 34 29 23 17 11 14 10 35 34 29 23 17 14 10 A1ft	

Question Number	Scheme			
	Notes			
(a)	1M1 = 1B1: Cao 4 1A1 = 2B1: either (173 ± 20) ÷ 50 or 3 <answer<4 seen.<="" th=""><th></th></answer<4>			
(b)	1M1: First four items placed correctly and at least 6 values put in bins1A1: Bin 1 correct (condone cumulative totals)2A1: All correct (condone cumulative totals)			
(c)	 1M1: Bubble sort, one pass complete end term 35 or 10, consistent direction. 1A1: First two passes correct 2A1ft: Next two passes correct 3A1: cso + 'final' or re-listing etc. 			
(d)	1M1: Bin 3 correct and at least 6 values put in bins 1A1: two bins correct (condone cumulative totals) 2A1: cso (condone cumulative totals)			
Misread for Q2(c)	Sorting into ascending order If list reversed into descending order at end, allow full marks			
	(i) Left to right $ \frac{23 29 11 34 10 14 35 17}{23 11 29 10 14 34 17 35} $ $ \frac{23 12 29 10 14 29 17 34 35}{11 23 10 14 29 17 34 35} $ $ A1 $ A1 List in order (ii) right to left $ \frac{23 29 11 34 10 14 35 17}{10 23 29 11 34 10 14 35 17} $ $ \frac{23 29 11 34 10 14 35 17}{10 23 29 11 34 14 17 35} $ $ \frac{10 11 23 29 11 34 14 17 35}{10 11 14 23 29 17 34 35} $ A1 List in order List in order (ii) right to left $ \frac{23 29 11 34 10 14 35 17}{10 11 23 29 14 34 17 35} $ A1 A1 List in order (ii) right to left $ \frac{23 29 11 34 10 14 35 17}{10 11 14 23 29 17 34 35} $ A1 A1 List in order If list not reversed remove last 2A if earned Numbers changing during the course of the sort (e.g. 23 becomes 25) remove final A persists in (d) but does not affect answer similarly remove final A only in (d). If the number alters the sort (e.g. 23 becomes 32) mark as a misread in (c) and if p (d) mark (c) and (d) together as a misread – so just take 2 marks off in total for th sections.	only. If persists in nese two		

Question Number	Scheme	Marks
3. (a)	CI CD (not DI) EF FI (not EI not DE) $\begin{cases} BC \\ HI \end{cases}$ (not BI) GF (not GI not HG) AB	M1 A1 A1 (3)
(b)	AB BC CI CD FI EF IH FG	M1 A1 A1 (3)
(c)	$\begin{array}{c} & B \\ & 39 \\ & 48 \\ & & 19 \\ & 19 \\ & & 19 \\ & & & 19 \\ & & & & 19 \\ & & & & & 19 \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ &$	B1
(4)	Weight: 270 Start off the tree with DI and HC and then apply Kruckel's algorithm	B1 (2)
(u)	Start off the free with DI and HO and then apply Kruskar's algorithm	(2) [10]
	Notes	
(a)	 1M1: Kruskal's algorithm – first 4 arcs selected chosen correctly. 1A1: All eight non-rejected arcs chosen correctly.(Working seen in (a)) 2A1: All rejections correct and in correct order and at correct time. 	
(b)	 1M1: Prim's algorithm – first four arcs chosen correctly, in order, or first five nodes chosen correctly, in order.{A, B,C,I, D} (arcs not arc lengths) 1A1: First six arcs chosen correctly; all 9 nodes chosen correctly, in order.{A,B,C,I,D,F,E,H,G}[1 2 3 5 7 6 9 8 4] 2A1: cso 	
(c)	1B1: cao (condone lack of numbers) 2B1: 270 cao	
(d)	1B1: Kruskal's algorithm + some argument 2B1: Kruskal's algorithm + start with the two arcs. (o.e)	

Question Number	Scheme		Mar	rks	
4.					
(a)	Pipartite graph		R1		
(~)				0.	
(b)	e.g.				
	J - 3 = B - 6 = K - 1			M1	
	Change status $J = 3 - B = 0 - K = 1$ A = 2 B = 6 (D unmatched) $J = 3$ K = 1 M	= 5		A1	
		J			(3)
(c)	e.g.				
	D - 2 = A - 6 = B - 1 = K - 4 Change status $D = 2$ $A = 6$ $B = 1$ $K = 4$			M1	
	A = 6 $B = 1$ $D = 2$ $J = 3$ $K = 4$ $M = 5$			A1	
					(3)
					[7]
	Notes				
(a)	1B1: Cao, but be charitable on spelling, award	if phonetically clos	е.		
(b)	1M1. Path from I to 1 or 4 (or vice versa)				
	1A1: CAO including change status (stated or shown), chosen path clear.				
	2A1: CAO must ft from stated path, diagram ok				
(c)	1M1: Path from D to 4 or 1 (or vice versa)				
	1A1: CAO including change status (stated or shown),but only penalise once per				
	question, chosen path clear.				
	2A1: CAO must ft from stated paths, diagram	ok. Must have both	M's.		
Alternative					
answers:					
(b)	Path A B I	JKM			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	365			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	345			
		515			
(c)	Path A B D	JKM			
	D - 2 - A - 6 - K - 4 6 1 2	345			
	D-3-M-2-A-6-K-4 6 1 3	342			
	D = 2 = A = 0 = B = 1 = K = 4 0 1 2 D = 5 = M = 2 = A = 6 = B = 1 = K = 4 6 1 5	342			
	D = 2 = A = 6 = B = 1 6.1.2	345			
	$\begin{array}{c} D - 2 - M - 0 - B - 1 \\ D - 5 - M - 2 - A - 6 - B - 1 \end{array} \qquad \begin{array}{c} 0 & 1 & 2 \\ 6 & 1 & 5 \end{array}$	342			

Question Number	Scheme	Marks
5. (a)	AD + FI = 4.5 + 5.3 = 9.8 AF + DI = 5.8 + 3.9 = 9.7 smallest AI + DF = 5.9 + 5.1 = 11.0 e.g. ABDGIGDEIHFEACFEA	M1 A1 A1 A1 A1 (5)
(b)	Roads AE, EF (or AEF), DG and GI (or DGI) should be repeated. Length is 31.6 + 9.7 = 41.3 km	B1 M1A1ft
(c)	We now only have to repeat one pair of odd vertices, one of which can not be D. (FI = 5.3, AF = 5.8 and AI = 5.9) FI gives the smallest of the three so choose to repeat FI (FHI)	M1 A1
	The machine should be collected from A.	DA1 (3)
	Notes	[['']
(a)	1M1: Three pairings of their four odd nodes 1A1: one row correct 2A1: two rows correct 3A1: all correct 4A1: Any correct route (17 nodes)	
(b)	 1B1: correct arcs identified 1M1: 31.6 + ft their least, from a choice of at least two. 1A1: ft has correctly their plausible least (from a choice of at least two) to 31.6. 	
(c)	 1M1: Identifies need to repeat one pairing, not including D (maybe implicit) or listing of potential repeats. 1A1: Identifies FI as least. 2DA1: dependent on their identifying FI as repeat 	

Question Number	Scheme	Marks
	Notes	
(a)	1B1: ratio of coefficients correct (i.e. equation of line correct) 2B1: inequality correct way round.($ay \ge bx$ o.e.)	
	3B1: ratio of coefficients correct (i.e equation of line correct)4B1: inequality correct way round.	
(b)	1B1: $x + y = 30$ drawn cao 2B1: $5x + 8y = 400$ drawn cao 3B1ft: shading correct or implied from lines with negative gradient. 4B1: cao	
(c)	1M1: Profit line – intersecting both axes. Minimum (2,0) to (0,3). Accept reciprocal gradient here.	
	1A1: a correct line	
	2A1=1B1: cao (e.g not '10x + 20y')	

Question Number	Scheme	Marks
7. (a)	ActivityImmediately preceding activitiesGB, CHE, FID, E, FJG, HKG, H, ILG, H, I	B3,2,1,0 (3)
(b)	Dummy from 6 to 7 needed because K and L depend on G H and I, but J depends on G and H only. Dummy from 8 to 9 needed because no two activities may share both the same start event number and the same finish event number	B3,2,1,0
	event number and the same missi event number.	(3)
(c)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 M1 A1
	(FH)	(4)
(d)	Critical activities: A C $\begin{cases} I & II \\ G \end{cases}$ J	B2,1,0 (2)
(e)	Total float on activity $K=21-14-5=2$	M1 A1ft (2)
(f)	Lower bound is $\frac{54}{21} = 2.57 = 3$	B1 B1ft
		(2) [16]

Question Number	Scheme	Marks
	Notes	
(a)	1B1: Any two rows correct	
	3B1: all correct	
(b)	1B1: first dummy (precedence) explained, maybe confused, be generous, give bod. 2B1: first dummy clearly explained – all relevant activities referred to. Must refer to K and/or L; H and/or G; I and J 3B1: second dummy (uniqueness) explained, maybe confused, be generous, give bod.	
(c)	1M1: All top boxes completed generally increasing left to right.(Condone one rogue) 1A1: cao. 2M1: All bottom boxes completed generally decreasing right to left. (Condone one rogue) 2A1: cao	
(d)	 1B1: Critical activities correct condone one omission or extra. SC allow ACGJ for B1 only 2B1: Critical activites cao 	
(e)	1M1ft: Correct calculation seen – all three numbers at least once. 1A1ft: Float correct >0	
(f)	1M1 = 1B: 3 1A1ft= 2B1ft:Correct calculation seen or '2< answer< 3	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA026247 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results)

June 2011

GCE Decision D1 (6689) Paper 1

ALWAYS LEARNING

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011 Publications Code UA027669 All the material in this publication is copyright © Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- L The second mark is dependent on gaining the first mark

June 2011 Decision Mathematics D1 6689 Mark Scheme

Question Number	Scheme	
1. (a)	The list is not in alphabetical order.	B1 (1)
(b)	E.g. A Quick sortJMCBTHKRGFHCBGFHJMTKRGTCBFGHJMKRTBKBCFGHJKMRTFRBCFGHJKMRTFRBCFGHJKMRTFRSort complete + named correctly	M1 $A1$ $A1$ $A1 = B1$ (4)
(c)	Pivot 1 = $\left[\frac{1+10}{2}\right]$ = 6 Jenny reject 1 - 6 Pivot 2 = $\left[\frac{7+10}{2}\right]$ = 9 Richard reject 9 - 10 Pivot 3 = $\left[\frac{7+8}{2}\right]$ = 8 Merry reject 8 Pivot 4 = 7 Kim - name found	M1 A1 A1ft A1 (4) 9
(a) B1 (b) M1 1A1 2A1 3A1=2B1 (c) M1 1A1 2A1 3A1	Notes: CAO – phonetically close Quick sort – pivots, p, selected and first pass gives <p, p,="">p. First two passes correct, pivots chosen consistently for third pass CAO Sort completed correctly 'Stop' + plus correct name for their sort – phonetically close Using their 'sorted list' + choosing middle right pivots+ discarding/retaining half the list. It their list is not in full alphabetical order M1 only. First pass correct ie 6th item for a correct list (no sticky pivots) Second and third passes correct ie 9th and 8th items from a correct list (no sticky pivots) CSO search complete + 'found'</p,>	

Question	Scheme	Mar	ks
Number			
2. (a)(i)	A tree is a connected graph with no cycles/circuit	B1	
(a)(ii)	A minimum spanning tree is a tree that contains all vertices and the total length of its arcs (weight of tree) is as small as possible.	B1 B1	(3)
(b)	AB, DE, BC; $\begin{cases} \text{reject AC} \\ \text{BD} \end{cases}$ reject BE, reject CE, use either EF or CF	M1; A1	A1 (3)
(c)	$\mathbf{A} \underbrace{\mathbf{A}}_{10} \underbrace{\mathbf{I}}_{13} \underbrace{\mathbf{I}}_{13} \underbrace{\mathbf{I}}_{0} \underbrace{\mathbf{F}}_{0} \underbrace{\mathbf{F}}_{14} \underbrace{\mathbf{I}}_{14} \underbrace{\mathbf{F}}_{14} \underbrace{\mathbf{F}}_{14} \underbrace{\mathbf{F}}_{18} \underbrace{\mathbf{F}}_{14} \underbrace{\mathbf{F}}_{14} \underbrace{\mathbf{F}}_{18} \underbrace{\mathbf{F}}_{14} \underbrace{\mathbf{F}}_{14} \underbrace{\mathbf{F}}_{18} \underbrace{\mathbf{F}}_{14} $	B1	(1)
(d)	No, there are two solutions since either EF or CF should be used.	B1	(1) 8
(a)1B1 2B1 3B1 (b)M1 1A1 2A1 (c)B1 (d)B1	Notes Connected + no cycles Contains all vertices Total length of arcs used minimised or minimum weight. (Not shortest/smallest etc.) First four arcs selected correctly in correct order. Arcs selected correctly at correct time Rejections correct and at correct time CAO CAO - mark explanation must specify two arcs of 18 or two 18's or ref to EF and CF		

advancing learning, changing lives

Question Number	Scheme	Marks
3. (a)	$6x + 5y \le 60$ $2x + 3y \ge 12$ $3x \ge 2y$ $x \le 2y$	B2,1,0 (2)
(b)	Drawing objective line{ (0,3) (1,0)} Testing at least 2 points Calculating optimal point Testing at least 3 points $\left(7\frac{1}{17}, 3\frac{9}{17}\right) = \left(\frac{120}{17}, \frac{60}{17}\right) \approx (7.06, 3.53)$	M1 A1 DM1 A1 awrt (4)
(c)	$24\frac{12}{17} = \frac{240}{17} \approx 24.7$ (awrt)	B1 (1)
(d)	(6,4)	B1 (1) 8
Notes: (a)1B1 2B1 (b)1M1 1A1 2DM1 2A1 (c)B1 (d)B1	$ \begin{pmatrix} 3\frac{3}{7}, 1\frac{5}{7} \end{pmatrix} = \begin{pmatrix} \frac{24}{7}, \frac{12}{7} \end{pmatrix} \approx (3.43, 1.71) \rightarrow 12 (1\frac{11}{113}, 2\frac{10}{13}) = \begin{pmatrix} \frac{24}{13}, \frac{36}{13} \end{pmatrix} \approx (1.85, 2.77) \rightarrow 8.3\ 07692\ \left(8\frac{4}{13} = \frac{108}{13}\right) \left(4\frac{4}{9}, 6\frac{2}{3}\right) = \begin{pmatrix} \frac{40}{9}, \frac{20}{3} \end{pmatrix} \approx (4.44, 6.67) \rightarrow 20 (7\frac{1}{17}, 3\frac{9}{17}) = \begin{pmatrix} \frac{120}{17}, \frac{60}{17} \end{pmatrix} \approx (7.06, 3.53) \rightarrow 24.7\ 05882\ \left(24\frac{12}{17} = \frac{420}{17}\right) $ Notes Any two inequalities correct, accept < and > here (but not = of course). All four correct. Must be \leq and \geq here Drawing objective line or its reciprocal OR testing two vertices in the feasible region (see list above) points correct to 1 dp. Correct objective line OR two points correctly tested (1 dp ok) Calculating optimal point either answer to 2 dp or better or using S.E's (correct 2 equations for their point + attempt to eliminate one variable.); OR Testing three points correctly and optimal one to 2dp. CAO 2 dp or better. CAO CAO not (4,6).	

advancing learning, changing lives

Question Number	Scheme	Marks
4. (a)	[Given A - 3 = R - 4 = C - 5] A - 1 = H - 2 A - 1 = H - 3 = R - 4 = C - 5	M1 A1 A1 (3)
(b)	A = 3,C = 5, H = 1, (J unmatched), R = 4	B1 (1)
(c)	Alternating path : $J - 4 = R - 3 = A - 1 = H - 2$ Change status : $J = 4 - R = 3 - A = 1 - H = 2$ A = 1, C = 5, H = 2, J = 4, R = 3	M1 A1 A1 (3) 7
(a)M1 1A1 2A1 (b)B1 (c)M1 1A1 2A1	Notes Path from A to 2 or 5 - or vice versa One correct path selected OR tree showing the missing two paths only. Both correct paths listed separately CAO Path from J to 2 - or vice versa Correct path including change status CAO must follow through from stated path.	

advancing learning, changing lives

Question Number	Scheme	Marks
5. (a)	AC + DF = 9 + 13 = 22 \leftarrow AD + CF = 16 + 8 = 24 AF + CD = 17 + 7 = 24 Repeat arcs AC, DG and GF	M1 A1 A1 A1 A1ft (5)
(b)	E.g. ADCACGDGFGECBEFBA Length of route = $98 + 22 = 120$ (km)	B1 B1ft (2)
(c)	CF (8) is the shortest link between 2 odd nodes excluding D Repeat CF (8) since this is the shortest path excluding D. We finish at A Length of route = $98 + 8 = 106$ (km)	M1 A1ft A1ft (3) 10
(a)M1 1A1 2A1 3A1 4A1ft (b)1B1 2B1ft (c)M1 1A1ft 2A1ft	Notes Three pairings of their four odd nodes One row correct including pairing and total Two rows correct including pairing and total Their smallest repeated arcs stated accept DGF or arcs clear from selected row. Correct route any start point, 17 nodes, AC, DG and GF repeated CAO 98 + their least out of a choice of at least 2. Attempting just one repeated path excluding D; accept AC, AF and CF listed A and their least repeat [should be CF (CEF)] clearly stating this as least 98 + their least from their working in (a)	

advancing learning, changing lives

Question Number	Scheme	Marks
6. (a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 (ABCD) A1ft (EF) A1ft (GH) A1 A1 A1ft (G)
(b)	E.g. $71 - 12 = 59$ GH $49 - 10 = 39$ FE $24 - 13 = 11$ CD 59 - 10 = 49 EG $39 - 15 = 24$ DF $11 - 11 = 0$ AC Or Trace back from H including arc XY if (Y already lies on the path and) the difference of the final values of X and Y equals weight of arc XY.	B2,1,0 (2)
(c)	ACBEGH Length 72 (km)	B1 B1 (2) 10
(a)M1 1A1 2A1ft 3A1ft 4A1 5A1ft (b)1B1 2B1 (c)1B1 2B1	Notes Big replaced by smaller at least once at B or D or E or G or H A, B, C, D boxes all correct, condone lack of 0 in 's working value E and F ft correctly G and H ft correctly CAO ft on their final value. Attempting an explanation, at least 3 stages or one half of general explanation Correct explanation – all six stages, both halves of explanation CAO CAO CAO	

Question	Scheme									
7. (a)	ActivityProceeded byActivityProceeded byActivityProceeded by(A)(-)EA BIC D E(B)(-)(F)(B)JC D ECA B(G)(B)KF H I(D)(B)HC DLF G H I	B3,2,1,0								
(b)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
(c)	7 G (4) Critical activities are B D J H L									
(d)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 M1 A1 (4)								

Question	Scheme	Marke
Number		IVIAI KS
(e)	E.g. Between time 7 and 16, 3 workers could do $3 \ge 9 = 27$ days work. Activities C, D, E, F, G, H, I and 4 days of J need to be done This totals 31 days work.	B3,2,1,0
	OR If three workers are used three activities H, J and I need to happen at time 13.5, this reduces the float on F and G, meaning that at 10.5 D, C, F and G need to be happening. Our initial assumption is incorrect hence four workers are needed.	(3) 16
(a)1B1	Notes Any two rows correct	
2B1	Any four rows correct	
3B1 (b)1M1	All seven rows correct All top hoves complete values generally increasing left to right condone one roque	
1A1	CAO	
2M1	All bottom boxes complete, values generally decreasing R to L, condone one rogue	
2A1	CAO	
(c)M1	Accept dummies, repeats and condone one absence or one extra; or BDHL or BDJ	
(d)1M1	At least 9 activities including at least 4 floats. Do not accept scheduling diagram	
1A1	Critical activities dealt with correctly	
2M1	All 12 activities including at least 7 floats	
2A1	Non-critical activities dealt with correctly.	
(e)1B1	Attempt at explanation – one correct idea.	
2B1	Good explanation, some imprecise or vague statements – give bod	
361	Fully correct explanation. No bod needed	

Question Number	Scheme									
8.	Let <i>x</i> be the number of type A radios and y be the number of type B radios.									
	Maximise $P = (15x + 12y)$									
	ubject to									
	$x \ge 50$	B1								
	$(x+y) < x$ (accept \leq) $[y < 4x]$ B									
	$f(x+y) > x$ (accept \ge) $[2y > 3x]$									
	$3x + 2y \le 200$									
	$y \ge 0$	B1								
		7								
	Notes									
1B1	Defining x and y; Must see 'number of'									
2B1 2D1	CAO objective function $15x + 12y$									
4B1	CAO $x \ge 50$ CAO $x \ge 50$ CAO $x \ge 50$ $x \Rightarrow y < 4x$									
5B1	CAO o.e $\frac{2}{5}(x+y) > x \Rightarrow 2y > 3x$									
6B1	CAO o.e $3x + 2y \le 200$									
7B1	$\begin{array}{ccc} CAO & y \ge 0 \end{array}$									

Question	Scheme								
Number	Additional solutions								
QIU	Ouick sort middle left								
	J M C B T H K R G F T	M1							
		Δ1							
	BCGFHJKMRT GJ	AI							
	B C F G H J K M R T C								
	B C F G H J K M R T	A1							
	Quick sort complete	Al							
	Bubble sort left to right								
	IMCPTHKPCE								
	J C B M H K R G F T T in place, consistent direction	M1							
	C B J H K M G F R T								
	B C H J K G F M R T Passes 1 and 2 correct	A1							
	B C H G F J K M R T								
	BCGFHJKMR T								
	B C F G H J K M R T Sort correctly + 'stop'								
	Soft named concerny + stop	211							
	Bubble right to left								
	J M C B T H K R G F								
	B J M C F T H K R G B in place, consistent direction	M1							
	B C J M F G T H K R	A 1							
	B C F J M G H I K R Passes I and 2 correct B C F G J M H K T R	AI							
	B C F G H J M K R T								
	B C F G H J K M R T Sort correct	A1							
	Bubble sort complete sort named correctly + stop	AI							
	Sorting into reverse alphabetical order – this is acceptable								
	e.g. Quick sort middle right								
	JMCBTHKRGF H	M1							
	JMTKRHCBGF TG								
	TJMKRHGCBF KB	A1							
	I M R K J H G C F B R F	Δ1							
	Quick sort complete	Al							

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA027669 June 2011

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

January 2012

GCE Decision D1 (6689) Paper 1

ALWAYS LEARNING

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2012 Publications Code UA030319 All the material in this publication is copyright © Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol $\ \ \wedge$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

 $(x^{2} + bx + c) = (x + p)(x + q), \text{ where } |pq| = |c| \text{ , leading to } x = \dots$ $(ax^{2} + bx + c) = (mx + p)(nx + q), \text{ where } |pq| = |c| \text{ and } |mn| = |a| \text{ , leading to } x = \dots$

2. <u>Formula</u>

Attempt to use <u>correct</u> formula (with values for a, b and c), leading to x = ...

3. Completing the square

Solving $x^2 + bx + c = 0$: $(x \pm \frac{b}{2})^2 \pm q \pm c, \quad q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^* \rightarrow x^{*-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

January 2012 6689 Decision Mathematics D1 Mark Scheme

Question Number	Scheme							
Q1 (a)	DC, EG, CF, reject DF; AD, BC, reject AB, BE, reject EF and FG, DH							
(b)	AD, DC, CF, CB; BE; EG, DH	M1;A1; A1 3						
(c) (d)	Weight of tree = 148 (km)	B1 1 B1 1 Total 8						

Notes

a1M1: First three arcs correctly chosen and DF rejected. Accept weights for all 3 marks.

Special case: If all 7 arcs, in correct order, but no rejections seen at all, then award M1 only.

a1A1: All arcs/weights in tree selected correctly at correct time.

a2A1: All rejections correct and at the right time.

b1M1: First four arcs/weights correctly chosen, or first five nodes ADCFB chosen in order.

Special case : If Prim but not starting at A please send to review.

- b1A1: First five arcs/weights correctly chosen, or all nodes in order A, D, C, F, B, E, G, H.
- b2A1: CSO (must be arcs/weights). E.g no 'reject' arcs
- c1B1: CAO mark what you see at (c).
- d1B1: CAO mark what you see at (d).

Question Number	Scheme				
Q2 (a)	BD + EF = $10 + 17 = 27$ BE + DF = $15 + 10 = 25 \neg$ BF + DE = $20 + 14 = 34$ Repeat arcs BC, CE and DF Length of route = $129 + 25 = 154$	M1 A1 A1 A1 A1ft B1ft 6			
(b)	We add BF(12) to the network so only have to repeat DE (14) Length of route is therefore 129 + 12 + 14 = 155 155>154 so his route would be increased	M1 A1 2 Total 8			

- a1M1: Three pairings of their four odd nodes
- a1A1: One row correct including pairing and total
- a2A1: Two rows correct including pairing and total
- a3A1: Three rows correct including pairing and total
- a4A1ft: Their smallest repeated arcs, (accept BCE).
- a1B1ft: 129 + their least out of a choice of at least two possible, distinct, pairings.
- b1M1: DE identified, using/repeating 12 + their DE [ft from (a)]
- b1A1: CAO, conclusion, numerical argument e.g. ref to 155 or 26 etc.

Question Number	Scheme	Mar	ks
Q3 (a) (b) (c)	A bipartite graph consists of two sets of vertices X and Y. The edges only join vertices in X to vertices in Y, not vertices within a set. A Matching is the pairing of some or all of the elements of one set, X, with elements of a second set, Y. Alternating path: $J - 4 = E - 2 = C - 3$ Change status: $J = 4 - E = 2 - C = 3$ C = 3, E = 2, G = 1, H = 6, J = 4, (S unmatched)	B2,1,0 B2,1,0 M1 A1 A1	2 2 3
(d)	Alternating path: $S - 6 = H - 3 = C - 2 = E - 5$ Change status: $S = 6 - H = 3 - C = 2 - E = 5$ C = 2, E = 5, G = 1, H = 3, J = 4, S = 6	M1 A1 A1 Total 1 0	3 0

- a1B1: 2 sets of vertices
- a2B1: arcs must go from one set into the other.
- b1B1: pairing or one to one.
- b2B1: element(s) from 1 set with element(s) of the other.
- c1M1: Path from J to 3 or vice versa
- c1A1: CAO including change status (stated or shown), chosen path clear.
- c2A1: CAO unambiguous. Must ft from stated path, diagram ok
- d1M1: Path from S to 5 (or vice versa)
- d1A1: CAO including change status (stated or shown), but only penalise once per question, chosen path clear.
- d2A1: CAO unambiguous. Must ft from stated paths, diagram ok. Must have both M's.

In (a) Accept any rising sequence for order of labelling. Order of working values is crucial.

- a1M1: Big replaced by small in working values at least once at D or F or I or J.
- a1A1: A, B, C, H boxes all correct, condone lack of 0 in A's working value
- a2A1ft: E and D ft, based on their order of labelling. Penalise order of labelling only once.
- a3A1ft: G and F ft, based on their order of labelling. Penalise order of labelling only once.
- a4A1: I and J CAO. Penalise order of labelling only once.
- a1B1: Route CAO
- a2B1ft: 114, or their final value ft.
- b1B1: route CAO.
- b2B1: length CAO.

Question Number	Scheme							
Q5 (a)	Bin 1: 5, 1, 8, 5 Bin 4: 8, 12 Bin 2: 13, 2 Bin 5: 15 Bin 3: 16 Bin 6: 10							
(b)	E.g Bubbling left to right (see alts)5181316582151210581316582151210181316585151210211316885151210521161388151210552116131512108552116151312108855211615131210885521	M1 A1 A1ft A1ft A1 5						
(c)	Bin 1: 16, 2, 1Bin 4: 12, 8Bin 2: 15, 5Bin 5: 10, 8Bin 3: 13, 5							
(d)	E. g. $\frac{95}{20} = 4.75$ so a minimum of 5 bins needed.							

a1M1: Bin 1 correct 13 and 16 in bins 2 and 3.

Bin 2 correct 8 in bin 4. a1A1:

a2A1: CAO

b1M1: End number (greatest/least) in place. Consistent direction throughout.

b1A1: first pass correct.

b2A1ft: 2^{nd} and 3^{rd} passes correct – so end three numbers in place. b3A1ft: 4^{th} and 5^{th} passes correct – so end five numbers in place.

b4A1: cso including 'sorted', or extra pass (es), ruling off, boxed, ticked etc.

c1M1: Bins 4 and 5 correct, others started.

Special case: If list at end of (b) wrong give M1 only for their 1st 7 terms placed correctly.

Bins 2 and 3 correct up to the 5s. c1A1:

c2A1: cao

d1M1: Numerical argument. E.g. Attempt to find lower bound o.e., consideration of 'spare room'. Etc. (Accept '5 items \geq 10' o.e for M1 only)

d1A1: correct numerical argument; conclusion (the yes/no) may follow from (c).

Alternatives for Question 5(b)

Righ	t to left											
5	1	8	13	16	5	8	2	15	12	10	1M1	
16	5	1	8	13	15	5	8	2	12	10	1A1	
16	15	5	1	8	13	12	5	8	2	10		
16	15	13	5	1	8	12	10	5	8	2	2A1ft	
16	15	13	12	5	1	8	10	8	5	2		
16	15	13	12	10	5	1	8	8	5	2	3A1ft	
16	15	13	12	10	8	5	1	8	5	2		
16	15	13	12	10	8	8	5	1	5	2		
16	15	13	12	10	8	8	5	5	1	2		
16	15	13	12	10	8	8	5	5	2	1 + S	top	4A1

Misreads – allow recovery if list reversed.

Left	to right	ascend	ing					·				
5	1	8	13	16	5	8	2	15	12	10	1M1	
1	5	8	13	5	8	2	15	12	10	16	1A1	
1	5	8	5	8	2	13	12	10	15	16		
1	5	5	8	2	8	12	10	13	15	16	2A1ft	
1	5	5	2	8	8	10	12	13	15	16		
1	5	2	5	8	8	10	12	13	15	16	3A1ft	
1	2	5	5	8	8	10	12	13	15	16 +	stop	4A1
Righ	nt to Lef	't ascend	ling									
5	1	8	13	16	5	8	2	15	12	10	1M1	
1	5	2	8	13	16	5	8	10	15	12	1A1	
1	2	5	5	8	13	16	8	10	12	15		
1	2	5	5	8	8	13	16	10	12	15	2A1ft	
1	2	5	5	8	8	10	13	16	12	15		
1	2	5	5	8	8	10	12	13	16	15	3A1ft	
1	2	5	5	8	8	10	12	13	15	16 +	stop	4A1

Q6 Notes:

a1B1: CAO, both. Must be \leq and \geq not < and >.

b1B1: 3x + 4y = 360 CAO. If extended it must go axis to axis within one small square. Must be long enough to form the correct feasible region. Lines should be drawn with a ruler.

b2B1: x = 2y If extended must go through (0,0) and (120, 60) within one small square. Must be long enough to form the correct feasible region. Lines should be drawn with a ruler.

b3B1ft: ft their lines for correct shading on one of their lines. Implicit if R is correct.

b4B1: Region R correct, CAO. Must be labelled.

c1B1: CAO

d1M1: Drawing objective line or its reciprocal.

d1A1: Correct objective line. Axis to axis (0, 30) to (10, 0) minimum.

- d2DM1: Depends on 1st M and correct region. Finding their correct optimal point.
- d2A1: CSO

e1B1: CAO

The vertices in R are:

 $(40, 20)(40, 50)(53\frac{1}{3}, 50)$ (72, 36)

Q7 Notes

ai1B1: K, I, D and at least one of B, E, F referred to. Correct statement but maybe incomplete give bod here. ai2DB1: Clear correct statement. No bod.

- aii3B1: correct statement referring to either events or activities. ('unique' alone not enough)
- b1M1: All top boxes complete, values generally increasing left to right, condone one rogue b1A1: CAO
- b2M1: All bottom boxes complete, values generally decreasing R to L, condone one rogue b2A1: CAO
- c1M1: Correct calculation seen once, all three numbers correct (ft).
- c1A1ft: one float (≥ 0) correct.
- c1B1: Both floats correct (independent of working)
- d1M1: Attempt to calculate a lower bound. [51-67 / their finish time]. Accept awrt 2.81
- d1A1: CSO.
- e1M1: At least 7 activities including at least 4 floats. Do not accept scheduling diagram.
- e1A1: Critical activities dealt with correctly
- e2M1: All 11 activities including at least 8 floats
- e2A1: Non-critical activities dealt with correctly

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA030319 January 2012

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2012

GCE Decision D1 (6689) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012 Publications Code UA031965 All the material in this publication is copyright © Pearson Education Ltd 2012

Summer 2012 6689 Decision Maths 1 Mark Scheme

General Marking Guidance

- •All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- •Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- •All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- •Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- •When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question 1 (c) Misread

Usual rule, remove the last 2 A marks awarded in (c) if list not reversed.

20	33	19	24	31	22	27	18	25	M1
20	19	24	31	22	27	18	25	33	
19	20	24	22	27	18	25	31	33	A1
19	20	22	24	18	25	27	31	33	
19	20	22	18	24	25	27	31	33	A1ft
19	20	18	22	24	25	27	31	33	
19	18	20	22	24	25	27	31	33	
18	19	20	22	24	25	27	31	33	
List	in order								A1 CSO
20	33	19	24	31	22	27	18	25	M1
18	20	33	19	24	31	22	27	25	
18	19	20	33	22	24	31	25	27	A1
18	19	20	22	33	24	25	31	27	
18	19	20	22	24	33	25	27	31	A1ft
18	19	20	22	24	25	33	27	31	
18	19	20	22	24	25	27	33	31	
18	19	20	22	24	25	27	31	33	
List	in order								A1 CSO

Note: if final list is reversed in (c), award full credit

Summer 2012 6689 Decision Mathematics D1 Mark Scheme

Question Number	Scheme	Marks
1.(a)	$\frac{219}{50} = 4.38$ so lower bound is 5 bins	M1 A1 (2)
(b)	Bin 1: 20 19 Bin 2: 33 Bin 3: 24 22 Bin 4: 31 18 Bin 5: 27 Bin 6: 25 Bin 6: 25 Bin 4: 31 18	M1 <u>1A1</u> 2A1 (3)
(c)	e.g (left to right)	
	20 33 19 24 31 22 27 18 25	
	33 20 24 31 22 27 19 25 18	M1
	33 24 31 22 27 20 25 19 18	1A1
	33 31 24 27 22 25 20 19 18	
	33 31 27 24 25 22 20 19 18	2A1ft
	33 31 27 25 24 22 20 19 18	
	List in order	3A1 CSO (4)
(d)	Bin 1: 33 Bin 2: 31 19 Bin 3: 27 22 Bin 4: 25 24 Bin 5: 20 18	<u>M1</u> <u>1A1</u> 2A1
		Total 12

Notes for question 1

a1M1 219 (186-252) /50

a1A1 CAO correct calc seen or awrt 4.4 + 5

b1M1 First four terms placed correctly in bins 1, 2 and 3. (Condone cumulative totals here only.)

b1A1 First seven terms placed correctly.

b2A1 CAO

c1M1 Bubble sort. Consistent direction throughout sort, end number (greatest/least) in place.

c1A1 first and second passes correct – so end two numbers in place

c2A1ft 3rd and 4th passes correct – so end four numbers in place.

c3A1 CSO; including 'sorted' or final list rewritten in (c) or 'final pass' o.e. A clear statement in (c).

d1M1 Must be using 'sorted' list in decreasing order . First five terms correct.

d1A1 First seven terms correct.

d2A1 CAO

SC for 1(d) If 'sorted' list is wrong from (c) then award M1 only in (d) for their first seven terms correctly placed.

 Alt for (c) right to left

 20
 33
 19
 24
 31
 22
 27
 18
 25

 33
 20
 31
 19
 24
 27
 22
 25
 18
 M1

 33
 31
 20
 27
 19
 24
 25
 22
 18
 1A1

 33
 31
 27
 20
 25
 19
 24
 22
 18

 33
 31
 27
 20
 25
 19
 24
 22
 18

 33
 31
 27
 25
 20
 24
 19
 22
 18
 2A1ft

 33
 31
 27
 25
 24
 20
 22
 19
 18

 33
 31
 27
 25
 24
 22
 20
 19
 18

 33
 31
 27
 25
 24
 22
 20
 19
 18

 List in order
 3A1 CSO

2.(a)	Either (i) $G-3 = C-2 = F-1 = D-4$	M1 1A1
	or (ii) $G - 5 = E - 4$ or (iii) $G - 5 = E - 1 = D - 4$ Change status	2A1
	Either (i) $G = 3 - C = 2 - F = 1 - D = 4$ or (ii) $G = 5 - E = 4$	
	or (iii) $G = 5 - E = 1 - D = 4$ Giving matchings:	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3A1 (4)
(b)	Gives another solution $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 1A1 2A1 (3)
		Total 7

Notes for question 2

Mark the candidates best attempt as part (a)

- a1M1 Path from G to 4 or vice versa
- a1A1 CAO chosen path clear.

a2A1 Change status step clear stated or shown. [Only accept 'change status'; 'c.s.'; sight of the connectives being swapped]

a3A1 CAO must ft from stated path, diagram ok

b1M1: A second path from G to 4 (or vice versa)

b1A1: CAO including change status (stated or shown), chosen path clear.

b2A1: CAO must ft from stated paths, diagram ok.

Notes for question 3

a1B1 All four arcs CAO (+ see below)

a2B1 All four weights CAO.

Additional notes for (a)

- If B0 B0 but three arcs and their weights correct then give B1 B0.
- If extra arcs and weights remove second B mark (so B1 B0 max)
- If just one of DB or DE or DC missing, mark remainder of question as a misread.
- If two or more arcs are missing send to review.
- If DF used instead of DG, ignore references to this in (b)

b1M1 First three arcs correctly chosen and at least one rejection seen at some point. (Kruskal not Prim.)

- b1A1 First five arcs selected correctly; BD, DE, CD, then (in either order) EF, AB
- b2A1 CAO including necessary rejections.
- c1B1 CAO condone missing weights.
- d1B1 CAO

Question Number	Scheme	Marks	
4(a)	The valency of a vertex is the number of edges incident to it.	B2,1,0 (2)	
(b)	DE + HI = 131 + 75 = 206 DH + EI = 146 + 137 = 283 DI + EH = 143 + 62 = 205* Arcs EH, DF and FI will be traversed twice.	M1 1A1 2A1 3A1 4A1ft (5)	
(c)	Route length = $1436 + 205 = 1641(m)$	B1ft (1)	
(d)	Since HI is removed only D and E are odd, So only the route between DE need to be repeated Route length = $1436 - 75$ (for HI) + $131 = 1492$ (m)	M1 A1 (2)	
(e)	Route should start and finish at D and E. E.g DCFDAEBGEFKIFHJGHE (18 vertices)	M1, A1 (2)	
		12 marks	

Notes for question 4

a1B1 Give bod but refers to arc/edge and to node/vertex

- a2B1 A clear, correct statement. CAO.
- b1M1 Three pairings of their four odd nodes
- b1A1 One row correct including pairing and total
- b2A1 Two rows correct including pairing and total
- b3A1 Three rows correct including pairing and total
- b4A1ft Their smallest repeated arcs, (accept DFI).
- c1B1ft Must have a choice of at least two pairs seen in part (b). 1436 + their least from (a).
- d1M1 Aim to include their DE(131) [ft from (b)] and remove HI(75) or 1436+131-75
- d1A1 CAO 1492. Must see method though, NMS gets M0.
- e1M1 D and E identified as start and finish nodes. We do not have to see a route here.
- e1A1 CAO must see a route. 18 vertices; Each of A–K present; 3E's, 3F's, 2D's, 2G's and 2H's.

Question Number	Scheme	Marks
5(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1(SCFA) A1ft (BD) A1(ET)
(b)	SCFBDET ; length 65 E.g. $65 - 20 = 45$ ET; $45 - 12 = 33$ DE; $33 - 10 = 23$ BD; $23 - 9 = 14$ FB; $14 - 6 = 8$ CF; $8 - 8 = 0$ SC Or Work back from T, including arc XY if the weight of arc XY = the difference in the final values of X and Y.	1B1; 2B1ft (6) B2ft, 1ft, 0 (2)
(c)	SCFBET; length 68	B1; B1 (2) Total 10

Notes for question 5

a1M1 Big replaced by smaller at least once at B or D or E or T.

a1A1 S, C, F and A boxes all correct, condone lack of 0 in A's working value

a2A1ft B and D ft correctly. Penalise order of labelling only once per question.

a3A1 E and T correct. Penalise order of labelling only once per question.

a1B1 Route CAO

a2B1ft their final value ft.

b1B1ft Attempting an explanation, at least 3 stages or one half of general explanation.

b2B1ft Correct explanation – all stages, both halves of explanation

c1B1 Route CAO.

c2B1 length CAO.

Amplification for (b)

General explanation:

1B1 for partial explanation e.g. 'working backwards/traceback' or ref to arcs and final value differences 2B1 for working backwards **from T** + include an arc XY if weight of XY = final value of Y – final value of X.

Demonstration:

1B1 for three correct calculations for **their** network

2B1 for all calculations correct **and** linking arcs/nodes to those calculations. Arc lengths and final values visible.

Question Number	Scheme	Marks				
6(a) (b)	Act.I.P.A.Act.I.P.A.Act.I.P.AA- E AID FB-FB EJC D F GC-GB EKHDAHC	B2, 1, 0 (2)				
	$5 \qquad D(4) \qquad 11 \\ 23 \\ A(5) \qquad E(3) \qquad F(2) \\ 0 \qquad B(9) \qquad 9 \qquad G(3) \qquad 14 \qquad J(3) \qquad 28$					
	C (14)	2M1 2A1 (4)				
	14 H (10) 24'					
(c)	Total float on $E = 21 - 5 - 3 = 13$	M1 A1 (2)				
(d)	$\frac{62}{28} = 2.21$ so lower bound is 3 workers	M1 A1 (2)				
(e)	e.g. 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 A E D I I B F G J B F G J	1M1 1A1 2A1 3A1 (4)				
		Total 14				

Question 6

- a1B1 Any 3 rows completed correctly
- a1B2 All five rows completed correctly
- b1M1 All top boxes complete, values generally increasing left to right, condone one rogue
- b1A1 CAO

b2M1 All bottom boxes complete, values generally decreasing R to L, condone one rogue. Condone missing 0 or 28 for the M only.

- b2A1 CAO
- c1M1 Correct calculation seen all three numbers correct (ft). Float ≥ 0 .
- c1A1 CAO
- d1M1 Attempt to find lower bound. [52-72 / their finish time] accept awrt 2.2.

d1A1 CAO – correct calculation seen or awrt 2.2, then . [Beware 28/11 gives 3 also, so 3 with no working gets M0A0.]

e1M1 Not a cascade chart. 4 'workers' used at most. At least 7 activities. If in doubt send to review.

e1A1: CHKAB correct. C- 14; H – 10; K – 4; A – 5; B – 9. A and B completed by their late finish times. (A by time = 18 B by time = 21).

Now you need to check the last 6 activites – the last two marks are for D, E, F, G, I, J only

First check that they have only used three workers and that all 11 activities are present (just once).

Then check precedences: You have these on the mark scheme in (a).

Each row of the table in (a) could give rise to 1 error (only)

I'd suggest you check these ones first since they are most likely to generate errors.

- F must not start until after B and E are complete.
- $\bullet\,G\,$ must not start until after B and E are complete.
- J must not start until after C, D, F are complete.
- I must not start until after D and F are completed

Finally you need to check the length of each activity.

Length 5 - A, I Length 4 - D Length 3 - E, G, J Length 2 - F Length 9 - B

e2A1: 3 workers. All 11 activities present (just once). Condone one error either precedence, or activity length, on activities D, E, F, G I, J.

e3A1: 3 workers. All 11 activities present (just once). No errors on activities D, E, F, G I, J.

Please use the pen or highlighter tool to indicate any errors to your team leader. Usually we use a vertical line to indicate precedence errors, indicating the overlap, and a horizontal line to indicate an activity of incorrect length.

Question Number		Scheme	Marks
7	(a)	$y \le x$	B1 (1)
	(b)	$y \ge \frac{1}{6}(x+y)$ $6y \ge x+y$ $5y \ge x$	B2,1,0 (2)
	(c)	$5x + 6y \le 300$	B1 (1)
	(d)	Two lines and shading correctly added	B1 B1 (2)
	(e)	R correctly labelled	B1 (1)
	(f)	Objective line correctly drawn and labelled Optimal vertex labelled	M1 A1 A1 (3)
	(g)	Buy 48 standard and 10 luxury cars, Expected profit £4640 per week	1B1 2B1, 3B1 (3) 13 marks

Notes for question 7

a1B1 CAO

b1B1 Either of my first two lines. Must have three terms, two in y and one in x.

b2B1 CSO. (Answer given) must have \geq throughout.

c1B1 CAO

In (d) If lines do not meet both axis then extend as necessary, but must extend beyond the feasible region. Use the line drawing tool to check.

d1B1 5y = x drawn correctly, passes within a small square of (0,0) and (50, 10). Ignore shading.

d2B1 5x + 6y = 300 drawn correctly, passes within a small square of (0, 50), (30, 25) and (60, 0) Ignore shading.

e1B1 CAO – but must have scored both marks in (d)

f1M1 Drawing objective line with correct gradient, use line drawing tool to check if necessary. You can give BOD here if it is close. If their line is shorter than the length equivalent to that of line (0, 5) to (5, 0), please send to review.

f1A1 Correct objective line drawn (so no BOD) and their correct V labelled, or clearly indicated, or coordinates written to 1 dp.

f2A1 CSO, R correct, my V labelled or clearly indicated, or coordinates written to 1dp so awrt (9.7, 48.4). g1B1 Finding vertex, in my R, with integer coordinates. Must be within 2 small squares of their V and must be maximising, so accept only; (48, 10), (47, 10), (46, 11), (27, 27), (28, 26).

g2B1 CAO (48, 10)

g3B1 CAO 4640

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA031965 Summer 2012

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

January 2013

GCE Decision Mathematics D1 6689/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013 Publications Code UA034373 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{will}}$ be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but incorrect answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of '0' or '1' for each mark, or "trait", as shown:

	0	1
aM		•
aA	•	
bM1		•
bA1	۲	
bB	•	
bM2		•
bA2		٠

January 2013 6689 Decision Mathematics 1 Mark Scheme

Question Number			Schei	ne		Mark	S
1 (a)		Ν	Е	R	Qn		
1 (a)		72	8	8.5	Ν	M1	
			8.5	8.485 294 118	N	A1	
			8.485 294 118	8.485 281 374	N		
			8.485 281 374	8.485 281 374	Y	A1	
	Output is	R = 8.48	5 281 4			A1ft	(4)
(b)	We woul square ro	d get a ne ot	gative output for R	We would get the	negative	B1	(1)
(c)	E canno	ot be zero				B1	(1)
						Total 6 marks	
	Notes a1M1: Ai a1A1: CA exact sec a2A1: CA a3A1ft: C awrt 7dp Output ei table but 'yes'. Condone througho b1B1: Ma statement on the ou c1B1: CA	t least two AO first two ond value AO third a Dutput for – candida ither on th must be i N = 72 or ut for full ention of $\frac{1}{2}$ ts but bod itput. Acce AO (nothin	prows of cells in ju vo rows correct giv for R is $\frac{577}{68}$). nd fourth rows awn R must follow threat te must have answe e answer line (or or n the column for R in each row and entri- marks. Allow e.g. 'negative' scores B that 'negative' onli- ept 'other square ro- ng/null etc. scores I	st E and R completing exact values or t 7dp bugh from their fir ered 'yes' to score in the second page) below the row wh tries appearing on set ticks/crosses etc. for 1 however do not a y is implicitly desc ot'. 30). Condone E = 0	ted. awrt 7dp (the nal value for R this mark. or stated in the ich contains eparate rows or yes/no. accept incorrec ribing the effe).	e t ct	

Question Number	Scheme	Marks	
2 (a)	Pivot $1 = \left[\frac{1+26}{2}\right] = \left[13.5\right] = 14$ letter N reject A – N Pivot $2 = \left[\frac{15+26}{2}\right] = \left[20.5\right] = 21$ letter U reject U – Z	M1 A1	
	Pivot $3 = \left[\frac{15+20}{2}\right] = [17.5] = 18$ letter R reject R – T	A1	
	Pivot $4 = \left[\frac{15+17}{2}\right] = 16$ letter P – located	A1	(4)
(b)			
	E.g. The maximum number of letters at the start of each iteration is 26, 13, 6, 3, 1	M1	
	So a maximum of 5 iterations is necessary	A1	(2)
		Total 6 marks	
	Notes a1M1: Choosing middle right pivot (choosing middle left is M0) + discarding/retaining half the list. M1 only for an 'incorrect' list - allow 1 error (e.g. two letters interchanged) or one omission or 1 extra letter. a1A1: First pass correct i.e. N found as pivot for a correct list and either using O to Z in 2^{nd} pass or discarding A to N (so therefore no 'sticky' pivots – sticky is when the letter being considered is retained in the next pass) a2A1: Second and third passes correct i.e. U and R (no sticky pivots). Special case : Allow recovery for this mark if a sticky pivot is used in first pass but sticky pivots are not used in the 2^{nd} and 3^{rd} passes. So after		
	retaining N incorrectly the 2^{nd} pass would give T and the 3^{rd} pass would give Q leaving a list with N O P.		
	a3A1: CSO (correct solution only – all three previous marks must have been awarded to score this mark) search complete + 'found' (accept 'found', 'located', 'stop', etc. but not just the letter; must be convinced that P has been located).		
	If no alphabetical list seen then withhold the final A mark in part (a). If the alphabetical list is not given then bod that candidate is using		
	the correct ordered list (which is implied by the correct passes). Listing		
	the alphabet and then numbering the alphabet and referring to the corresponding numbers is fine for full marks. Candidates may renumber		
	their list for each pass to calculate pivots. However, use of numbers and		
	comparing to 16 without any reference to the alphabet is M0.		
	b1M1: Numerical argument; listing size of list, using logs, etc.		
	b1A1: Correct complete argument.		

Question Number	Scheme	Marks
3 (a)	(i) $C - 4 = N - 6 = J - 3 = R - 2$ or (ii) $O - 6 = J - 3 = R - 2$	M1
	Change status to give (i) $C = 4 - N = 6 - J = 3 - R = 2$ or (ii) $O = 6 - J = 3 - R = 2$	A1
	Improved matching is: C G J N O R (i) 4 5 3 6 2 (ii) 5 3 4 6 2	A1 (3)
(b)	E.g. Tasks 1 and 5 can only be done by George E.g. Charlie can only do task 4 and Olivia can only do task 6 which means that Nurry can't be allocated a task as Nurry can only do tasks 4 and 6	B2, 1, 0 (2)
(c)	O - 6 = N - 4 = C - 5 = G - 1 or $C - 5 = G - 1Change status to give O = 6 - N = 4 - C = 5 - G = 1 or C = 5 - G = 1Maximum matching is: C = 5, G = 1, J = 3, N = 4, O = 6, R = 2$	M1 A1 A1 (3)
		Total 8 marks
	Notes a1M1: An alternating path (e.g. letter - number - letter) from C or O to 2 or vice versa.	
	a1A1: CAO – a correct path including change status either stated (only accept 'change (of) status' or 'c.s.') or shown (all symbols e.g. (– =) interchanged (= –)). Chosen path clear.	
	a2A1: CAO must follow from the correct stated path. Accept on a clear diagram (with five arcs only).	
	b1B1: Correct idea, may be imprecise or muddled (bod gets B1) all relevant nodes must be referred to and must be correct.	
	b2B1: Good, clear, complete, correct answer (this needs to be checked carefully e.g. G can only do tasks 1 and 5 is B1 only).	
	c1M1: A second alternating path from O or C to 1 (whichever letter (of O or C) that they didn't use before) or vice versa.	
	c1A1: CAO including change status (stated or shown), chosen path clear.	
	c2A1: CAO must follow from two correct stated paths (so both previous M marks must have been awarded). Accept on a clear diagram (with six arcs only).	

Question Number	Scheme	Marks	
4 (a) (b)	A path is a (i) finite sequence of edges, such that (ii) the end vertex of one edge in the sequence is the start vertex of the next, and in which (iii) no vertex appears more than once. $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B2, 1, 0 M1 A1 (S,A, B, A1ft (D, F) A1 (E, T)	(2)
	Shortest path: SBADET Length: 40 (miles)	B1 B1ft	(6)
(c)	Shortest distance S to $F = 29$ (miles)	B1ft	(1)
(d)	SADET or SCDET; of length 41 (miles)	B1 B1 Total 11 marks	(2)
	Notes a1B1: One of the three points made clearly or two suggested. Arcs (edges)/ vertices (nodes) must be referred to correctly. Do not condone incorrect technical language e.g. point for vertex. a2B1: All three points made clearly. b1M1: A larger value replaced by a smaller value at least once at A or D or E or F or T. b1A1: All values in S, A, B and C correct. The working values at A must be in the correct order. Condone lack of 0 in S's working value. b2A1ft: All values in D and F ft correctly and working values in the correct order. F must be labelled before E but penalise order of labelling only once per question. b3A1: All values in E and T correct and working values in the correct order. Penalise order of labelling only once per question. b1B1:Route CAO b2B1ft: Their final value ft (if answer is not 40 ft their final value at T) c1B1ft: Their final value ft (if answer is not 29 ft their final value at F) d1B1: Either route CAO d2B1: Length CAO (condone lack of (or incorrect) units throughout)		

Question Number	Scheme	Marks	
5 (a)	AC (32) CF (14) DF (12) EF (17); BE (15) FI(18); IJ (10) GJ (9) DH (19)	M1 A1; A1	(3)
(b)	$146 \ge 80 = (\pounds) \ 11 \ 680$	M1 A1	(2)
(c)	BF + GH = 32 + 40 = 72 BG + FH = 39 + 25 = 64* BH + FG = 57 + 37 = 94	M1 A3,2,1	1,0
	Roads BE, EG and FH need repeating	A1ft A1	(6)
(d)	379 + 64 = 443 (km)	B1ft	(1)
(e)	Ben should choose to repeat FH (25) since this is the shortest. He should choose B and G as his start and finish vertices Route length is $379 + 25 = 404$ (km)	M1 A1 A1	(3)
		Total 15 marks	
	Notes Accept the weight of each arc to represent the arcs (as each value is unique). a1M1: First four arcs correctly chosen or first five nodes correctly chosen (A, C, F, D, E,). Any rejections seen during selection scores M0. Order of nodes may be seen at the top of a matrix. a1A1: First six arcs correctly chosen or all nodes correctly chosen (A, C, F, D, E, B, I, J, G, H). Order of nodes may be seen at the top of a matrix. a2A1: CSO (must be considering arcs for this final mark). b1M1: 80× their MST weight. Accept a value in the interval [114,178]×80 for this mark. If no working is seen then M0 unless answer is correct. b1A1: CAO (11680 with no working scores both marks). c1M1: Three distinct pairings of their four odd nodes. c1A1: Any one row correct including pairing and total. c2A1: Any two rows correct including pairing and total. c3A1: All three rows correct including pairing and total. c3A1: CAO BE, EG and FH. Accept BEG or BG via E but not just BG). BEG (or e.g. BG via E) could appear in their working. c5A1: CAO BE, EG and FH. Accept BEG or BG via E (could appear in working) but not just BG. d1B1ft: correct answer of 443 or 379 + their least out of a choice of at least		
	 two totals given in part (c). e1M1: FH (or 25) specifically identified as least. e1A1: B and G identified as the start and finish nodes. e2A1: 404 CAO (condone lack of (or incorrect) units throughout). 		

Question Number		Marks			
	Misread in the first fo	e			
	Starting	Minimum Arcs required for	Nodes	Order	
	at	M1 only			
	В	BE,EF,DF,CF	B, E, F, D, C	(10)15423(8967)	
	С	CF,DF,EF,BE	C, F, D, E, B	(10)51342(8967)	
	D	DF,CF,EF,BE	D, F, C, E, B	(10)53142(8967)	
	Е	BE,EF,DF,CF	E, B, F, D, C	(10)25413(8967)	
	F	DF,CF,EF,BE	F, D, C, E, B	(10)53241(8967)	
	G	GJ,IJ,FI,DF	G, J, I, F, D	(10)(86)5(7)41(9)32	
	Н	DH,DF,CF,EF	H, D, F, C, E	(10)(6)4253(9)1(78)	
	Ι	IJ,GJ,FI,DF	I, J, G, F, D	(10)(86)5(7)43(9)12	
	J	GJ,IJ,FI,DF	J, G, I, F, D	(10)(86)5(7)42(9)31	

Humbor
6. 6. y_{0} y_{0} y_{0

Question Number	Scheme	Marks
	f1M1: At least three of their (or the correct) R vertices found (by either reading off their graph or using simultaneous equations) and tested using their T (or the correct T). Objective line method (only) is $M0$.	
	f1A1: Three vertices found and tested correctly CAO (must be using three of the correct vertices (see table above) and the values for T must be correct).	
	f2A1: All five vertices found and tested correctly CAO (all values of T must be correct).	
	f3A1: CAO number of each and time, both correct and it must be clear that $x = 20$ and $y = 30$ (accept as coordinates). If values appear in e.g. a table it must be clear that (20, 30) and 320 has been selected (condone lack of/incorrect units on the time)	

Question Number	Scheme	Marks	
7 (a)	Activity K depends on activities E, F and B, but activity I depends on F and B only.	B2, 1, 0	(2)
(b)			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		M1 A1 M1 A1	(4)
(c)	Critical activities are: A, F, I, L	B1	(1)
(d)	Total float on $G = 15 - 6 - 6 = 3$	M1 A1	(2)

Question Number	Scheme	Marks	
(e)	0 2 4 6 8 10 12 14 16 18 20 22 24 A B F I I L I L I I I D C I B I I I I I I D I E I I I I I I I G I I I I I I I H I I I I I I H I I I I I		
(f)	Activities A. C and D must be happening at time 5.5	M1 A1 A1 A1 B1	(4) (1)
(g)	E.g. Activities F, B, C and G together with 9< time<10 stated	M1	(2)
	Notes	Total 16 marks	(2)
	 a1B1: K, I, E and at least one of B or F referred to. Correct statement but may be incomplete give bod here. a2B1: Clear correct statement no bod (at least one of only B or F referred to can score this mark). b1M1: All top boxes complete, values generally increasing left to right, condone one 'rogue' (if values do not increase from left to right then if one value is ignored and then the values do increase from left to right then this is considered to be only one rogue value). 		
	b2A1: CAO b2M1: All bottom boxes complete, values generally decreasing right to left, condone one rogue. Condone missing 0 or 21 for the M only. b2A1: CAO c1B1: CAO d1M1: Correct calculation seen, all three numbers correct (ft), float ≥ 0 d1A1: CAO (no ft on this mark) e1M1: At least 9 activities including at least 5 floats. Scheduling diagram		
	scores M0. e1A1: The correct critical activities dealt with correctly e2A1: All correct non-critical activities present with floats with 5 non- critical activities correct		

Question Number	Scheme	Marks
	e3A1: All 9 non-critical activities correct f1B1: CAO g1M1: A statement with the correct number of workers and details of either time or activities correct. If no part of their statement is correct then allow M mark (only) on the ft with time and activities from their 13 activity , 9 float diagram. Scheduling the activities only or a lower bound calculation argument scores M0 . g1A1: A correct, complete full statement details of time and activities (The two options are F, B, C and G with 9 < time < 10 or F, C, G and H with 10 < time < 11). Please note strict inequalities for the time. Allow e.g. on 'day 10' as equivalent to 9 < time < 10.	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Publications Code UA034373 January 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2013

GCE Decision Maths D1 (6689/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA035692 All the material in this publication is copyright © Pearson Education Ltd 2013

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

Question Number	Scheme	Marks		
1. (a)	C-5 = F-2 = D-6 change status to give $C = 5 - F = 2 - D = 6Improved matching is (A unmatched) B = 4, C = 5, D = 6, E = 1, F = 2$	M1 A1 A1 (3)		
(b)	E.g. activities 3 and 4 can only be done by B E.g. both A and E can only do activity 1	B1 (1)		
(c)	A - 1 = E - 6 = D - 2 = F - 4 = B - 3	M1		
	Change status to give $A = 1 - E = 6 - D = 2 - F = 4 - B = 3$	Al		
	Complete matching is $A = 1$, $B = 3$, $C = 5$, $D = 2$, $E = 6$, $F = 4$	A1 (3)		
		(7 marks)		
	Notes for Question 1			
a1M1: An alternating path (e.g. letter – number – letter –) from C to 6 or vice versa				
alAl: CAC) – a correct path including change status either stated (only accept 'change)	ge (of) status'		
or 'c.s.') o	or 'c.s.') or shown (all symbols e.g. $(=)$ interchanged $(=)$). Chosen path clear.			
a2A1: CAO must follow from the correct stated path. Accept on a clear diagram (with five arcs				
ONIV).				
orrect)				
c1M1: An alternating path from A to 3 or vice versa				
c1A1: CAO including change status (stated or shown) chosen path clear				
c2A1: CAO must follow from two correct stated paths (so both previous M marks must have been				
awarded). Accept on a clear diagram (with six arcs only).				

Question Number	Scheme	Marks
2. (a)	AB(85), BC(100), BD(135); BF(150), EF(140).	M1 A1; A1 (3)
(b)		B1 (1)
(c)	610 (minutes)	B1 (1)
(d)	 E.g. (any three) Kruskal starts with the shortest arc, Prim starts with any node. It is necessary to check for cycles when using Kruskal, not with Prim. When using Prim the 'growing' tree is always connected. When using Kruskal arcs are considered in ascending order of weight. Prim can be used when the network is given in matrix form. Prim adds nodes to the growing tree, Kruskal adds arcs. 	B1 B1 B1 (3)
	Other correct statements also get credit	(8 montra)
		(ð marks)

Notes for Question 2

a1M1: Prim's – first three arcs correctly chosen **or** first four nodes correctly chosen, in order. {A, B, C, D,...}. Any rejections seen during selection is **M0**. Order of nodes may be seen across the top of the matrix $\{1, 2, 3, 4, -, -\}$

a1A1: First four arcs correctly chosen **or** all six nodes correctly chosen {A, B, C, D, F, E}. Order of nodes may be seen across the top of the matrix $\{1, 2, 3, 4, 6, 5\}$ a2A1: CSO (must be considering arcs for this final mark).

Misread: Starting at a node other than A scores **M1 only – must** have the first three arcs (or four nodes or numbers) correct.

Starting at	Minimum arcs required for	Nodes	order
	M1		
А	AB BC BD	ABCD(FE)	1234(65)
В	AB BC BD	BACD(FE)	2134(65)
С	BC AB BD	CBAD(FE)	3214(65)
D	BD AB BC	DBAC(FE)	3241(65)
E	EF BF AB	EFBA(CD)	43(56)12
F	EF BF AB	FEBA(CD)	43(56)21

b1B1: CAO (weights on arcs not required)

c1B1: CAO (condone lack of/incorrect units)

d1B1: One correct statement.

d2B1: A second correct statement.

d3B1: A third correct statement.

In part (d) all technical language must be correct (so do not condone point for vertex/node etc.)

Notes for Question 3

a1M1: **All** top boxes complete, values generally increasing left to right, condone one rogue. a1A1: CAO.

a2M1: Bottom boxes complete, values generally decreasing right to left, condone one rogue. Condone missing 0 or 37 for the M mark only.

a2A1: CAO

b1M1: Correct calculation seen. All three numbers correct (ft).

b1A1: Float correct (no follow through on this mark)

c1M1: Attempt to find lower bound. [82 - 104 / their finish time] accept awrt 2.5

c1A1: CAO – correct calculation seen or awrt 2.5, then 3. (Beware 37/13 gives 3 also, so 3 with no working gets M0A0.)

d1M1: Not a cascade chart. 4 workers used at most. At least 8 new (10 in total) activities placed. d1A1: The critical activities (F I K M) and B correct. F - 8; I - 9; K - 5; M - 6; B - 7. B completed by 9 (its late finish time).

Now check the last 6 activities - the last two marks are for D, E, G, H, J and L only

First check that there are only three workers and that all 11 new (13 in total) activities are present (just once).

Then check precedences (see table below) – each row of the table could give rise to 1 error only in precedences

Finally check the length of each activity (see number in brackets in the activity column in the table below)

Activity	I.P.A	Activity	I.P.A
A (8)	-	H (5)	С
B (7)	-	I (9)	EF
C (9)	-	J (11)	GH
D (9)	А	K (5)	DI
E (5)	А	L (4)	DI
F (8)	BC	M (6)	EFJK
G (7)	B C		

d2M1: 3 workers. All 11 new (13 in total) activities present (just once). Condone one error either precedence, or activity length, on activities D, E, G, H, J and L.

d2A1: 3 workers. All 11 new (13 in total) activities present (just once). No errors on activities D, E, G, H, J and L.

Question Number	Scheme	Marks
4.(a)	E.g. a quick sort S J H A C K P D T L pivot K J H A C D K S P T L pivots A T <u>A</u> J H C D K S P L T pivots C P <u>A</u> C J H D K L P S T pivot H (L) (S) <u>A</u> C D H J K L P S T sort completed + named correctly	M1 A1 A1 A1 (4)
(b)	Pivot $1 = \left[\frac{1+10}{2}\right] = 6$ Komal, L is after K so reject 1 - 6 Pivot $2 = \left[\frac{7+10}{2}\right] = 9$ Sam, L is before S so reject 9 - 10 Pivot $3 = \left[\frac{7+8}{2}\right] = 8$ Polly, L is before P so reject 8	M1 A1 A1
	Pivot $4 = 7$ Lydia – name found	A1 cso (4)
		(8 marks)
	Notes for Question 4	
a1M1: Qu a1A1: Firs a2A1: CA	ick sort – pivots, p, selected and first pass gives <p, p,="">p. st two passes correct, pivots chosen consistently for third pass. O sort completed correctly</p,>	
a3A1: 'Stop' + correct name for their sort – phonetically close b1M1: Using their 'sorted list' + choosing middle right pivots+ discarding/retaining half the list. If their		
list contains one error (one error is either a missing letter, an extra letter or one letter incorrectly		
placed) then M1 only in part (b).		
blA1: Firs	st pass correct i.e. 6 th item from a correct list and retaining L – T (no sticky pixels $L^{\text{th}}(\Omega) = L^{\text{th}}(\Omega)$	vots)
b2A1: Sec	cond and third passes correct i.e. 9^{m} (S) and 8^{m} (P) items from a correct list (no	o sticky pivots).
03A1: CS	O search complete + Tound	

Notes for Question 4 Continued				
Additional solutions				
Quick sort middle left				
S J H A C K P D T L A C S J H K P D T L	Pivot C Pivots (A) and K	M1		
ACJHDKSPTL ACDHJKLPST	Pivots H and P Pivots (D, J, L) and S	A1		
<u>ACDHJKLPS</u> T		A1		
Quick sort complete		A1		
Bubble sort left to right				
Bubble soft left to fight				
S J H A C K P D T L J H A C K P D S L T	T in place, consistent direction	M1		
H A C J K D P L S T A C H J D K L P S T A C H D J K L P S T	Passes 1 and 2 correct	Al		
A C D H J K L P S T	Sort correct	A1		
Bubble Sort complete	Sort named correctly + 'stop'	A1		
Bubble sort right to left:				
S J H A C K P D T L	A in place consistent direction	M1		
ACSIHDKLPT	Passes 1 and 2 correct	M1 A1		
A C D S J H K L P T A C D H S J K L P T				
A C D H J S K L P T A C D H J K S L P T A C D H J K L S P T				
A C D H J K L P S T	Sort correct	A1		
Bubble Sort complete	Sort named correctly + 'stop'	Al		

Sorting into reverse alphabetical order is acceptable for full marks

Number	Scheme	Marks			
5. (a)	$AF + GH = 15 + 31 = 46^{*}$	M1			
	AG + FH = 32 + 15 = 47				
	AH + FG = 30 + 17 = 47	A3,2,1.0			
:	so repeat arcs AB, BF and GH	A1 (5)			
(b)	E.g. ABCDBFDEHGFHGAFBA (17 nodes)	B1			
]	length = 181 + 46 = 227	B1 ft (2)			
(c)	One path will have to be repeated. The shortest is 15	M1			
	So repeat AF, use G and H as the start and finish.	A1A1			
	or repeat FH, use A and G as the start and finish.	(3)			
		(10 marks)			
Notes for Question 5					
a1M1: Thre	e distinct pairings of their four odd nodes				
a1A1: Any	one row correct including pairing and total				
a2A1: Any	two rows correct including pairing and total				
a3A1: All th	a3A1: All three rows correct including pairing and total				
a4A1: CAO correct arcs identified AB, BF and GH. Accept ABF or AF via B (check to see if via B					
appears in working) but do not accept AF for this mark					
b1B1: Any correct route (checks: 17 nodes, the route starts and ends at A, pairings AB, BF and GH					
appear twice in the route and every letter from A to H (inclusive) appears at least once).					
b2B1ft: correct answer of 227 or 181 + their least out of a choice of at least two totals given in part (a)					
c1M1: Identifies need to repeat one pairing (maybe implicit) and 15 (or either AF or FH) specifically					
identified as the feast					
c1A1. Repeat (cluber A or H identified as start and finish					
ezrii. O and enner i or ii identified as start and fillish.					

a1B1: CAO

b1M1: A larger value replaced by a smaller value at least once in the working values at either G, E, D, C_1 or C_2 .

b1A1: All values in G, H, I and J correct. The working values at G must be in the correct order. Condone lack of 0 in the working value at J.

b2A1: All values in D, E and F correct and the working values in the correct order. Penalise order of labelling only once per question. (F, E and D labelled in that order with G, H, I and J labelled before F). b3A1ft: All values in C_1 and C_2 ft correct and the working values in the correct order. Penalise order of labelling only once per question. (C_2 labelled after all other nodes (D to J) – condone lack of final value or order of labelling for C_1)

b4A1: Route CAO

b5A1ft: Their final value ft (if answer is not 48 ft their final value at either C_1 or C_2 dependent on their route)

If the candidate uses either C_1 or C_2 as the starting vertex then this is not a misread. They can score a maximum of M1A0A0A0A1A1ft. If starting at:

 C_1 – M1 for a larger value replaced by a smaller value at either C_2 , F, G, H, I or J, then A0 A0 A0 then A1 for the route (C₁DFGIJ) and then A1 for 49 (or ft their final value at J).

 C_2 – M1 for a larger value replaced by a smaller value at either C_1 , F, G, H, I or J, then A0 A0 A0 then A1 for the route (C_2 EFGIJ) and then A1 for 48 (or ft their final value at J).

If the candidate uses both C_1 and C_2 as the starting vertices then award M1 for a larger value replaced by a smaller value at either F, G, H, I or J, then A0 A0 A0 then A1 for the correct route only (C_2 EFGIJ) and A1 for 48 (no ft).

Notes for Question 8

a1B1: CAO for $y \le 16$

a1M1: Coefficients correct, accept =, <, >, \leq , \geq here

a1A1: CAO

b1M1: Coefficients correct and 120 accept =, <, >, \leq , \geq here

b1A1: CAO

c1M1: Accept non-integer coefficients here, accept =, <, >, \leq , \geq here, coefficients correct.

c1A1: CAO must be integer coefficients.

d1B1: 4x + 3y = 120 correctly drawn. The line must pass within one small square of the point (18, 16) and if line extended must go from axis to axis through the points of intersection with the axes within one small square. The line must be long enough to form the feasible region. Check using measurement tool if required. Ignore shading.

d2B1: x = 3y correctly drawn. The line must pass within one small square of the origin and the point (24, 8). The line must be long enough to form the feasible region. Ignore shading.

d3B1: R labelled (not just implied by shading) – **must** have scored the first two marks in this part.

e1B1: CAO (isw if (P =) 45x + 30y is simplified to k(45x + 30y) but if 45x + 30y not stated then B0) f1M1: At least two of **their**, **or** the correct R vertices found (either by reading off their graph or using simultaneous equations) **and** tested using their P. Objective line method (only) is M0.

f1A1: Two vertices found and tested correctly CAO (must be using two of the **correct** vertices and the values for P must be correct).

f2A1: Three vertices found and tested correctly CAO (must be using three of the **correct** vertices and the values for P must be correct).

f3A1: All four vertices found and tested correctly CAO (all values of P must be correct).

g1B1: CAO for profit (condone lack of \pounds)

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA035685 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2013

GCE Decision Mathematics 1 (6689/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA035685 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

Number	Ma	Marks		
1. (a) Bipartite (graph)	B1	(1)		
(b) e.g. (see below for alternatives) First alternating path: $B - 4 = L - 3 = H - 2$ Change status to give $B = 4 - L = 3 - H = 2$ Improved matching: $A = 1$, $B = 4$, $H = 2$, (I unmatched), $L = 3$ R = 5	M1 A1 A1			
Second alternating path: $I - 1 = A - 3 = L - 5 = R - 6$ Changing status to give: $I = 1 - A = 3 - L = 5 - R = 6$ Complete matching: $A = 3$, $B = 4$, $H = 2$, $I = 1$, $L = 5$, $R = 6$	M1 A1 A1 7 mar	(6) ks		

Possible 1 st paths	Α	В	Η	Ι	L	R	Subsequent 2 nd paths
B - 4 - L - 3 - H - 2	1	4	2	-	3	5	I - 1 - A - 3 - L - 5 - R - 6
B - 4 - L - 5 - R - 6	1	4	3	-	5	6	I - 1 - A - 3 - H - 2
I - 1 - A - 3 - H - 2	3	-	2	1	4	5	B - 4 - L - 5 - R - 6

a1B1: CAO, but be charitable on spelling, award if phonetically close.

b1M1: An alternating path (e.g. letter – number – letter – ...) from either B to 2 or 6 or from I to 2 – or vice versa

b1A1: CAO – a correct path including change status either stated (only accept 'change (of) status' or 'c.s.') or shown (all symbols e.g. (...-... = ...) interchanged (... = ...-...)). Chosen path clear.

b2A1: CAO must follow from the correct stated path. Accept on a clear diagram (with five arcs only). b2M1: A second alternating path from the remaining (unused) I or B to the remaining (unused) 6 or 2 or vice versa.

b3A1: CAO including change status (stated or shown), chosen path clear

b4A1: CAO must follow from two correct stated paths (so both previous M marks must have been awarded).

Accept on a clear diagram (with six arcs only).

Question Number	Scheme	Marks
2.(a)	Bin 1: 0.6 0.2 0.4 0.5 0.1 Bin 3: 1.6 Bin 2: 1.5 0.3 Bin 4: 0.7 0.9	M1 A1 A1 (3)
(b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1 A1ft A1cso (4)
(c)	Bin 1: 1.6 0.4 Bin 2: 1.5 0.5 Bin 3: 0.9 0.7 0.3 0.1 Bin 4: 0.6 0.2	M1 A1 A1 (3)
(d)	e.g. $6.8/2 = 3.4$ so yes a minimum of 4 bins is needed	B1 (1) 11 marks

Notes for Question 2

a1M1: First four items placed correctly and at least six values put in bins. (Condone cumulative totals here only.)

a1A1: Bin 1 correct

a2A1: CSO All correct

b1M1: Quick sort – pivot, p, chosen (must be choosing middle left or right – choosing first/last item as the pivot is M0) and first pass gives >p, p, <p. So after the first pass the list should read (values greater than the pivot), pivot, (values less than the pivot). **If only choosing 1 pivot per iteration M1 only** b1A1: First pass correct, next two pivots chosen consistently for second pass.

b2A1ft: second and third passes correct (ft from their first pass and choice of pivots) – need not be choosing pivots for the fourth pass for this mark.

b3A1: CSO (correct solution only – all previous marks in this part **must** have been awarded) including 'sort complete' – this could be shown by the final list being re-written or 'sorted' statement or each item being used as a pivot.

c1M1: **Must be using 'sorted' list** in descending order. First four items placed correctly and at least six values put in bins. (Condone cumulative totals here only.)

c1A1: First seven items placed correctly (so Bin 1 and 2 correct, Bin 3 containing 0.9 and 0.7 and Bin 4 containing 0.6)

c2A1: CSO

SC for part (c) If '**sorted**' list is wrong from part (b) (i.e. one error e.g. a missing number, an extra number or one number incorrectly placed) then award M1 only in (c) for their first seven items correctly placed.

d1B1: A conclusion based on their answer to part (c) together with either a correct lower bound calculation or based on the total > 6 or full bins (three of the bins are full in part (c)).

	Notes for Question 2 Continued											
Part	Part (b) Using middle left as pivot											
0.6	1.5	1.6	0.2	0.4	0.5	0.7	0.1	0.9	0.3	pivot 0.4	M1	
0.6	1.5	1.6	0.5	0.7	0.9	<u>0.4</u>	0.2	0.1	0.3	pivots 1.6 0.1	A1	
<u>1.6</u>	0.6	1.5	0.5	0.7	0.9	<u>0.4</u>	0.2	0.3	<u>0.1</u>	pivots 0.5 0.2		
<u>1.6</u>	0.6	1.5	0.7	0.9	<u>0.5</u>	<u>0.4</u>	0.3	0.2	<u>0.1</u>	pivots 1.5 (0.3)	A1ft	
<u>1.6</u>	1.5	0.6	0.7	0.9	<u>0.5</u>	<u>0.4</u>	<u>0.3</u>	<u>0.2</u>	<u>0.1</u>	pivot 0.7		
<u>1.6</u>	1.5	0.9	0.7	0.6	<u>0.5</u>	0.4	<u>0.3</u>	0.2	<u>0.1</u>	sort complete	Alcso	

Misreads

- If they have misread a number **at the start of part (a), so genuinely miscopied** and got say 1.0 instead of 0.1 then mark the whole question as a misread removing the last two A or B marks earned. This gives a maximum total of 9.
- If they have used the correct numbers in part (a) and they then use incorrect numbers in part (b) (say 1.0 instead of 0.1) from the beginning of the sort or misread their own numbers **during part (b)** then count it as an **error in part (b)** but mark part (c) as a misread giving a maximum of 8 or maybe 7 marks depending on how many marks they lose in (b).

Sorting list into ascending order in (b)

- If the candidate sorts the list into ascending order and reverses the list **in part (b)** then they can score full marks.
- If the list is not reversed in part (b) then mark as a misread (so remove the last two A marks if earned in part (b)). If the list is reversed at the start of part (c) but not in part (b) then still treat this as a misread. If the list is still in ascending order in part (c) award no marks for first fit increasing. If the candidate says that the list needs reversing in part (b) but doesn't actually show the reversed list in part (b) then remove the final A mark.

Ascending (middle left)

0.6	1.5	1.6	0.2	0.4	0.5	0.7	0.1	0.9	0.3	(0.4)	M1
0.2	0.1	0.3	0.4	0.6	1.5	1.6	0.5	0.7	0.9	(0.1, 0.6)	A1
0.1	0.2	0.3	0.4	0.6	1.5	0.5	0.7	0.9	<u>1.6</u>	(0.2, 0.5)	
<u>0.1</u>	0.2	0.3	<u>0.4</u>	<u>0.5</u>	0.6	1.5	0.7	0.9	<u>1.6</u>	((0.3), 1.5)	Alft
<u>0.1</u>	<u>0.2</u>	0.3	<u>0.4</u>	<u>0.5</u>	0.6	0.7	0.9	1.5	<u>1.6</u>	(0.7)	
0.1	0.2	<u>0.3</u>	<u>0.4</u>	<u>0.5</u>	0.6	0.7	0.9	1.5	<u>1.6</u>		A1cso+complete
Ascei	nding (r	niddle r	right)								
0.6	1.5	1.6	0.2	0.4	0.5	0.7	0.1	0.9	0.3	(0.5)	M1
0.2	0.4	0.1	0.3	<u>0.5</u>	0.6	1.5	1.6	0.7	0.9	(0.1, 1.6)	A1
<u>0.1</u>	0.2	0.4	0.3	<u>0.5</u>	0.6	1.5	0.7	0.9	<u>1.6</u>	(0.4, 0.7)	
<u>0.1</u>	0.2	0.3	<u>0.4</u>	<u>0.5</u>	0.6	0.7	1.5	0.9	<u>1.6</u>	(0.3, (0.6), 0.9	9) A1ft
<u>0.1</u>	0.2	<u>0.3</u>	<u>0.4</u>	0.5	<u>0.6</u>	0.7	<u>0.9</u>	1.5	<u>1.6</u>		A1cso+complete

Notes for Question 3

Accept the weight of each arc to represent the arcs (as each value is unique).

a1M1: Prim's – first three arcs correctly chosen or first four nodes correctly chosen {A, C, D, E, ...}. Any rejections seen during selection M0. Order of nodes may be seen at the top of the matrix $\{1, -, 2, 3, 4, -\}$

a1A1: First four arcs correctly chosen **or** all six nodes correctly chosen $\{A, C, D, E, F, B\}$. Order of nodes may be seen at the top of the matrix $\{1, 6, 2, 3, 4, 5\}$ a2A1: CSO (must be considering arcs for this final mark).

Misread: Starting at a node other than A scores M1 only – must have the first three arcs (or four nodes or numbers) correct.

Starting at	Minimum arcs required for	Nodes	Order
	M1		
А	AC CD CE	ACDE(FB)	1(6)234(5)
В	BC AC CD	BCAD(EF)	3124(56)
С	AC CD CE	CADE(FB)	2(6)134(5)
D	CD AC CE	DCAE(FB)	3(6)214(5)
Е	EF CE AC	EFCA(DB)	4(6)3(5)12
F	EF CE AC	FECA(DB)	4(6)3(5)21

b1B1: CAO (weights not required)

c1B1: Any four arcs added correctly (weights not required)

c2B1: CAO (including weights) – bod if arcs 'appear' to be crossed out (they may be using the network diagram to answer part (d)).

d1M1: Kruskal's – first three arcs correctly chosen and **at least one rejection seen at some point**. d1A1: All five arcs selected correctly EF, AC, CD, CE, CB.

d2A1: CAO All selections and rejections correct (in correct order and at the correct time).

- Listing all the arcs in order and then listing those arcs in the tree in the correct order is fine for **full marks** (this implies that rejections are correct and at the correct time)
- Listing all the arcs in order and just drawing the MST is M0

SC for part (d): If the network diagram is incorrect in part (c) and it is clear that the candidate has used part (c) (instead of the original table) to answer part (d) then award M1 only for the first three arcs correctly chosen and at least one rejection seen at some point provided their network is connected and contains at least nine arcs.

e1B1: CAO (ignore lack/incorrect units)

a1M1: A larger value replaced by a smaller value at least once in the working values at either B or E or F or H or T.

a1A1: All values in A, B, C and D correct. The working values at B must be in the correct order. a2A1: All values in E, F and G correct and the working values in the correct order. Penalise order of labelling only once per question (F, G and E labelled in that order and F must be labelled after A, B, C and D).

a3A1ft: **All** values in H and T ft correct and the working values in the correct order. Penalise order of labelling only once per question (H and T labelled in that order and H labelled after all other nodes). a4A1: Route CAO.

a5A1ft: ft on their final value (if answer is not 30 ft their final value at T).

b1B1: Route CAO

b2B1: Length CAO (condone lack of (or incorrect) units throughout).

Question Number	Scheme	Marks					
5. (a)	AB + DE = 44 + 30 = 74* AD + BE = 42 + 35 = 77 AE + BD = 39 + 38 = 77 Repeat arcs AC, BC and DE	M1 A3.2.1.0 A1 (5)					
(b)	E.g. ABCADCBEDFGDEGHECA (18 nodes) Length: 344 + 74 = 418	B1 B1ft (2)					
(c)	One of AB (44), AD (42) or BD (38) will still have to be repeated. BD(38) is the shortest So start at E and finish at A , route length now is 344 + 38 = 382	M1 A1 DA1 (3)					
	Notes for Question 5	10 marks					
Notes for Question 5 a1M1: Three distinct pairings of their four odd nodes a1A1: Any one row correct including pairing and total a2A1: Any two rows correct including pairing and total a3A1: All three rows correct including pairing and total a4A1: CAO correct arcs identified AC, BC and DE. Accept ACB or AB via C (check to see if via C appears in working) but do not accept AB for this mark b1B1: Any correct route (checks: eighteen nodes (or seventeen arcs), the route starts and ends at A, pairings AC, BC and DE appear twice in the route and that every letter (A to H inclusive) appears at least once). b2B1ft: correct answer of 418 or 344 + their least out of a choice of at least two totals given in part (a) c1M1: Either identifies the need to repeat one pairing which does not include E (could list potential repeats) or identifies the need to repeat BD (or 38). c1A1: Identifies the need to repeat one pairing which does not include E and this is BD (38) because it is the least. To score the first two marks the candidate must make it clear that they need to repeat BD because it has the least weight of those pairings that do not include E. c2DA1: correct finishing point (A) and length (382). This mark is dependent on them identifying BD							

Question Number	Scheme	Marks
6. (a)	He must buy at least 90 boats in total $(x + y = 90)$	B1 (1)
(b)	E.g. The number of 2-seater boats(x) must be less than or equal to 1.5 times the number of 4-seater boats (y). (check: $y = 2, x = 3, 2, 1,$) (2x 3y)	B1 B1
	E.g. The number of 4-seater boats (y) must be greater than or equal to $2/3$ the number of 2-seater boats (x). (check: x = 3, y = 2, 3, 4,)	(2)
(c)	The correct 3 lines added; $x + y = 90$; $3y = 2x$; $y = x + 30$ Region, R labelled	B1; B1; B1 B1 (4)
(d)	(minimise $C = $) 100x + 300y	B1 (1)
(e)	Method clear – either at least 2 vertices tested or objective line drawn (54, 36), so 54 2-seater and 36 4-seater At a cost of £16 200	M1 A1 B1 B1 (4) 12 marks
	y = x + 30	

Notes for Question 6 a1B1: CAO (must have 'boats', 'least', '90', must be talking about boats not cost) b1B1: For a statement in context with either the ratio of coefficients correct (the 2 with the 2-seater and the 3 with the 4-seater) or inequality correct with correct numbers present but not in the correct ratio. b2B1: Clear accurate correct statement in context. c1B1: x + y = 90 correctly drawn. Must pass within one small square of the points of intersection with the axes c2B1: 3y = 2x correctly drawn. Must pass within one small square of the origin and (90, 60). c3B1: y = x + 30 correctly drawn. Must pass within one small square of (0, 30) and (60, 90). c4B1: Region, R, correctly labelled – not just implied by shading – must have scored all three previous marks in this part. d1B1: CAO (isw if 100x + 300y'simplified' to k(100x + 300y) but if 100x + 300y not stated then B0) e1M1: Line must be correct to within one small square if extended from axis to axis OR attempting to find two vertices of their R (or the correct R) by either reading off their graph or using simultaneous equations and testing using their objective function. e1A1: Correct objective line (same condition that the line must be correct to within one small square if extended from axis to axis) **OR** testing (30, 60) correctly (giving 21 000) and testing (54, 36) correctly (giving 16 200). e1B1: Correct point identified. (Condone in terms of x and y rather than in terms of boats.) e2B1: CAO – condone lack of/incorrect units on the cost.

Examples for part (b) scoring B1 B1 (useful check: when y = 2, x = 3, 2, 1, ... or when x = 3, y = 2, 3, 4, ...)

- Twice the number of 2-seater boats must be at most three times the number of 4-seater boats
- Three times the number of 4-seater must be at least twice the number of 2-seater boats
- For every three 2-seater boats there must be at least two 4-seater boats (or multiple of this ratio)
- For every two 4-seater boats there must be at most three 2-seater boats (or multiple of this ratio)
- At most 60% of the total boats are 2-seater
- At least 40% of the total boats are 4-seater

Examples of B1 B0 – in each case either the inequality is the correct way round OR the 2 is with 2-seater boats and the 3 is with the 4-seater boats (accept multiples of 2 and 3) (useful numbers: when y = 2, x = 3, 4, 5,... when x = 3, y = 2, 1, ..., when y = 3, x = 2, 1, ..., when x = 2, y = 3, 4, 5, ...)

- Twice the number of 2-seater boats must be at least three times the number of 4-seater boats
- Three times the number of 4-seater must be at most twice the number of 2-seater boats
- Three times the number of 2-seater must be at least twice the number of 4-seater boats
- For every three 2-seater boats there must be at most two 4-seater boats (or multiple of this ratio)
- For every two 4-seater boats there must be at least three 2-seater boats (or multiple of this ratio)
- For every two 2-seater boats there must be at least three 4-seater boats (or multiple of this ratio)
- For every three 4-seater boats there must be at most two 2-seater boats (or multiple of this ratio)
- At least 60% of the total boats are 2-seater
- At most 40% of the total boats are 4-seater
- At least 60% of the total boats are 4-seater
- At most 40% of the total boats are 2-seater

Notes for Question 7

Notes:

a1M1: All top boxes complete, values generally increasing left to right, condone one 'rogue' (if values do not increase from left to right then if one value is ignored and then the values do increase from left to right then this is considered to be only one rogue value) a1A1: CAO. a2M1: All bottom boxes complete, values generally decreasing right to left, condone one 'rogue'. a2A1: CAO b1M1: Correct calculation seen – all three numbers correct (ft), float 0. b1A1: Float correct (no ft on this mark) c1B1: CAO c2B1: CAO d1B1: 4 with (or without) working scores this mark e1M1: At least six activities added including six floats. Scheduling diagram scores M0. e1A1: Six activities including their floats dealt with correctly. e2M1: All remaining eleven activities including all eleven floats. e2A1: CAO. Examples for part (f):

Example 1: Activities H, I, J, K and L with 22 < time < 26 so 5 workers needed. Example 2: At 10 < time < 14, F, D, E and H must be happening. Activity G must be happening 7 < time < 18 but its duration is 5 so it must also occur at some point in the interval 10 < time < 14 so 5 workers needed.

f1M1: Example 1: A statement with the correct number of workers (5) **and** the correct activities (H, I, J, K and L) with some mention of time, **or**

Example 2: A statement with the correct number of workers (5), the correct activities (F,D,E and H) with some mention of time **and** an indication that G **must** be happening with the other four activities at some point - give bod but e.g. 'at time 11 F, D, E, G and H must be happening' is **M0**). Scheduling the activities only scores **M0**.

f1A1: A correct, complete full statement with details of both time **and** activities. Candidates only need to give a time within the intervals stated.

Please note strict inequalities for the time. Allow e.g. on 'day 23' as equivalent to 22 < time <23.

g1M1: Must have attempted both parts (d) and (f). Their higher lower bound chosen + attempt at a reason.

Allow for the M mark a reason which argues that e.g. the cascade chart gives a better lower bound (e.g. it takes into account exactly when activities must be taking place) **or** e.g. the calculation gives a better lower bound (e.g. as it takes into account the sum of all the activities) but without specifically answering the question of which of the two bounds is better. Give bod on an attempt at a reason.

g1A1: CAO plus a correct reason given. Acceptable reasons e.g. the cascade gives a larger value **or** the bound for the cascade shows that the project cannot be done with fewer workers, etc.

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA035685 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

January 2014

Pearson Edexcel International Advanced Level

Decision Mathematics 1 (WDM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014 Publications Code IA037666 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- •All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- •Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- •Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- •There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- •All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- •Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks					
1. (a)	Either 11 10 14 8 13 6 4 15 7 17 Or 4 11 17 10 14 8 13 6 7 15	M1 A1 (2)					
(b)	e.g. using middle right1117101481364157pivot 131714151311108647pivots 14, 61715141311108764pivots 15, 8(4)1715141311108764pivots (17), 10, (7)1715141311108764(sort complete)						
(c)	$\frac{105}{26} \approx 4.0385$ so 5 bins needed	M1 A1 (2)					
	Notes	8 marks					
a1M1: But	oble sort, end number in place correctly.						
aIAI: CA	U – isw after one complete pass						
SC for (a)	: If list sorted into ascending order – must be fully correct so either						
1/ 11 14	10 15 8 0 15 / 4 01 1/ 11 15 10 14 8 15 0 4 / scoles MIA0						
b1M1: Quick sort – pivots, p, selected and first pass gives <p, p,="">p. If only choosing 1 pivot per iteration M1 only. Using hubble sort in this part is M0.</p,>							
b1A1: First pass correct, pivots chosen consistently for second pass.							
b2A1ft: Second and third passes correct (ft from their first pass and choice of pivots) – need not be							
choosing the pivot for the fourth pass for this mark. b3A1: CSO all correct including choice of pivots for the fourth pass and then either a 'stop' statement							
or final re-listing or using each item as a pivot.							
Note: In part (b) if either ascending quick sort (which is not reversed at the end of the sort) or using the							

Note: In part (b) if either ascending quick sort (which is not reversed at the end of the sort) or using the list after part (a) then mark as a misread (so remove the final two A marks earned in this part – so max of 2/4 in (b)). If list is reversed in part (b) after ascending quick sort then full marks can be awarded. If attempting quick sort on ordered list then M0.

c1M1: Attempt to find lower bound $(105 \pm 17) / 26$, or answer correct to 3 significant figures (either truncated or rounded) so accept 4.03 or 4.04). Must be a numerical argument. c1A1: CSO including 5 (5 with no working scores M0).

January 2014 (IAL)

Notes for Question 1 continued										
Alternatives to 1(b)										
Middle left ascending										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	pivot 8 M1 pivots 10, 4 1A1 pivots 14, 6									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	pivots 17, 11, (7) 2A1ft sort complete 3A1									
Misreads for 1(b)										
Middle right	Middle left									
11 17 10 14 8 13 6 4 15 7 pivot 13 11 10 8 6 4 7 13 17 14 15 pivots 6,	11 17 10 14 8 13 6 4 15 7 pivot 8 14 6 4 7 8 11 17 10 14 13 15 pivots 4,									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 <u>4</u> 6 7 <u>8</u> <u>10</u> 11 17 <u>14</u> 13 15 pivots 6,									
4 <u>6</u> 7 <u>8</u> 11 <u>10</u> <u>13</u> <u>14</u> <u>15</u> 17 pivot 10	<u>4</u> <u>6</u> 7 <u>8</u> <u>10</u> <u>11</u> 13 <u>14</u> <u>17</u> 15 pivots 11,									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	lete <u>4 6 7 8 10 11</u> 13 <u>14</u> 15 <u>17</u> sort									
:										

Question Number	Scheme	Marks						
2. (a)	AB, BC, CF, CE; FG, AD; EH, HI	M1; 1A1; 2A1	(3)					
(b)	£191	B1	(1)					
(c)(i)	c)(i) CF, reject CE, AB, FG; {AD, reject AC}, reject DG, {reject BE, reject DF}, EH, reject FH, HI (Note BC and EF are already in the tree)							
(ii)	e.g. Prim cannot be used since with Prim the tree 'grows' in a connected fashion e.g. Kruskal can build its tree from disconnected fragments	B2,1,0	(5)					
(d)	£147	B1	(1)					
		10 m:	arks					
	Notes							
a1M1: First chosen in or a1A1: First	t four arcs (AB, BC, CF, CE) correctly chosen, or first five nodes (ABCFE) rder. If any rejections seen at any point then M1 (max) only. six arcs correctly chosen (AB, BC, CF, CE, FG, AD), or all nodes in orde	E) correctly						
(ABCFEGI a2A1: CSO	OHI). (must be arcs).							
bIBI: CAO		•						
ciiiMii: Kru	skal s - first three arcs (CF, AB, FG) correctly chosen and at least one re	jection see	n at					
ci1A1. All a	• arcs in tree selected correctly at correct time (CF_AB_FG_AD_EH_HI) 1	gnore any						
reference to	• BC and EF.	8						
ci2A1: CSC EF.) including all rejections correct and at the correct time. Ignore any referen	nce to BC a	nd					
EF. cii1B1: Partially correct answer – e.g. an indication that the arcs (BC and EF) are not connected or any mention of the tree being (initially) disconnected - so in both of these examples a pertinent correct statement is made but no explicit mention is made to either of the two minimum connector algorithms (i.e. no mention is made of Prim requiring arcs to be connected or that Kruksal can grow in a disconnected fashion). Give bod but for this mark there must be some mention of the 'unconnected' nature of the two initial arcs or problem. Note: describing how Kruskal can be adapted to find the MST scores no marks. cii2B1: Fully correct answer (so either Kruskal allows a tree to be formed from initially unconnected arcs or Prim requires the arcs/tree to be connected at all times - so linking the correct algorithm with the issues of this particular problem) – do not condone incorrect technical language for this mark (e.g. vertex for arc, point for vertex etc.) d1B1: CAO								

Question Number		Scheme								
Notes for Question 2 continued										
Misread: Starting at a node other than A scores M1 only – must have the first four arcs (or five										
nodes) corre	nodes) correct.									
		Starting	Minimum arcs required	Nodes						
		at	for M1 only							
		А	AB, BC, CF, CE	ABCFE						
		В	AB, BC, CF, CE	BACFE						
		С	CF, CE, FG, BC	CFEGB						
		D	AD, AB, BC, CE	DABCE						
		Е	CE, CF, FG, BC	ECFGB						
		F	CF, CE, FG, BC	FCEGB						
		G	FG, CF, CE, BC	GFCEB						
		Н	EH, CE, CF, FG	HECFG						
		Ι	HI, EH, CE, CF	IHECF						
-										

January 2014 (IAL)

Question Number	Scheme	Ma	arks
3. (a)	A matching is a pairing of some or all of the elements of one set X, with elements of another set Y	1B1 2B1	(2)
(b)	B-5=S-4=T-6 Change status to give $B=5-S=4-T=6$	M1 1A1	
	Improved matching: $B = 5$, $C = 1$, (H unmatched), $K = 2$, $S = 4$, $T = 6$	2A1	(3)
(c)	Either H-6 = T-4 = S-2 = K-1 = C-3 Changing status to give: $H = 6 - T = 4 - S = 2 - K = 1 - C = 3$ Complete matching: $B = 5$, $C = 3$, $H = 6$, $K = 1$, $S = 2$, $T = 4$	M1 1A1 2A1	(3)
	Alternative H - 6 = T - 4 = S - 5 = B - 2 = K - 1 = C - 3 Changing status to give: $H = 6 - T = 4 - S = 5 - B = 2 - K = 1 - C = 3$ Complete matching: $B = 2$, $C = 3$, $H = 6$, $K = 1$, $S = 5$, $T = 4$		8 martze
			o mai ks
154	Notes		
a1B1: pair a2B1: eler b1M1: Alt b1A1: CA b2A1: CA five arcs) c1M1: Alt	ing or one to one nent(s) from one set with element(s) of the other. ernating path from B to 6 - or vice versa O including change status (stated or shown), chosen path clear. O. Must follow from correct stated path, diagram okay (must be a clear diagra ernating path from H to 3 (or vice versa)	m with	only
c1A1: CA c2A1: CA only six ar	O including change status (stated or shown), chosen path clear. O. Must follow from two correct stated paths, diagram okay (must be a clear c rcs). Must have scored both M marks in part (b) and (c).	liagram	with

January 2014 (IAL)

Question Number	Scheme	Marks			
4. (a)	AE + IJ = 56 + 38 = 94 AI + EJ = 54 + 39 = 93* AJ + EI = 47 + 48 = 95 Repeat arcs AB, BD, DH, HI, EG and GJ.	M1 1A1 2A1 3A1 4A1	(5)		
(b)	Length: $367 + 93 = 460$ metres	BII	(1)		
(c)	Only AE needs to be repeated so new length is $367 + 35 + 56 = 458$ metres So the distance travelled by the robot is decreased	M1 A1ft	(2)		
		8 m	arks		
Notes					
a1M1: Thi a1A1: One a2A1: Two a3A1: Thr a4A1: CA b1B1ft: M c1M1: Ain see a nume 35 with 38 c1A1ft: Ce	ree distinct pairings of their four odd nodes e row correct including pairing and total o rows correct including pairing and total O correct arcs identified AB, BD, DH, HI, EG, GJ (accept ABDHI and EGJ). (ust have a choice of at least two pairs seen in part (a) . 379 + their least from n to include their AE (56) [ft from (a)] and add IJ (35) or 35 + '56' or 367 + 3 erical argument. Or if AE + IJ was the smallest pairing from (a) then comparir 3. orrect calculation and conclusion from their working.	n (a). 35 + '56'. N 1g/mention 6	lust of		

a3B1: for all four lines drawn correctly

Question Number	Scheme	Marks		
	Notes for Question 6 continued			
x + y = 500 passes through (0, 500), (250, 250), (500, 0) $5x + 4y = 4000 passes through (0, 1000), (400, 500), (800, 0)$ $y = 2x passes through (0, 0), (200, 400), (400, 800)$ $y = x - 250 passes through (250, 0), (500, 250), (700, 450)$ a4B1: Region, R, labelled correctly - not just implied by shading - must have scored all three previous marks in this part.				
b1M1: Must see simultaneous equations ($y = x - 250$ and $5x + 4y = 4000$) being used to find 'exact' point (or correct to 2 dp) – must get to $x = \cdots$ or $y = \cdots$. b2M1: Must see simultaneous equations ($y = 2x$ and $5x + 4y = 4000$) being used to find 'exact' point (or correct to 2 dp) – must get to $x = \cdots$ or $y = \cdots$. b1A1: accept awrt (555.56, 305.56) exact answers are $\left(\frac{5000}{9}, \frac{2750}{9}\right)$ or $\left(555\frac{5}{9}, 305\frac{5}{9}\right)$ b2A1: accept awrt (307.69, 615.38) exact answers are $\left(\frac{4000}{13}, \frac{8000}{13}\right)$ or $\left(307\frac{9}{13}, 615\frac{5}{13}\right)$				
SC: If no working shown and coordinates are given exactly or correct to 2dp then award M0M0A1A1 (if one coordinate correct then M0M0A1A0 or M0M0A0A1 – award in order as given in b1A1 and b2A1)				
b3M1: Evaluating C at both of their points and clearly selecting their optimal point b3A1: CAO, accept answer correct to 4 s.f. (either truncated or rounded) – so accept either the correct exact answer or an awrt to either 2638 or 2639 - must be clearly selected as optimal value (exact values are $\frac{23750}{9}$ or 2638 $\frac{8}{9}$ the other value is $\frac{48000}{13}$ or $3692\frac{4}{13}$) c1M1: Seeking to find $x + y$ at their optimal point.				
PhysicsAndMathsTutor.com

January 2014 (IAL)

Question	Sahama	Marka			
Number	Scheme	IVIAIKS			
	Notes for Question 7 continued				
a2M1: All	a2M1: All bottom boxes complete, values generally decreasing right to left, condone one rogue value.				
Condone r	nissing 0 or 29 for the M only.				
a2A1: CA	0				
b1M1: No	t a scheduling diagram. At least 9 activities including at least 4 floats.				
b1A1: Crit	tical activities dealt with correctly.				
b2M1: All	12 activities including at least 7 floats.				
b2A1: Not	n-critical activities dealt with correctly.				
c1B1: A c	c1B1: A correct answer of 4, with the correct activities (IJFG) and some mention of time.				
c2B1: A c	c2B1: A correct statement with details of time and activities. Note strict inequality on time – note that				
on day 18	is equivalent to $17 < \text{time} < 18$.				
d1M1: No	t a cascade chart. 4 'workers' used at most. At least 7 activities.				
J1 A 1. AD	CHW connect A 7, D 9, C 9, L 0, L 0, K 5 D converted that its late f	(,,,,,,,			

d1A1: ABCIJK correct. A – 7; B – 8: C – 8; I – 9; J – 9; K – 5. B completed by its late finish time (9).

d2A1: 4 workers. All 12 activities present (just once). Condone one error either precedence, or activity length, on activities D, E, F, G, H, L.

d3A1: 4 workers. All 12 activities present (just once). No errors on activities D, E, F, G, H, L

Activity	Duration	I.P.A.	Activity	Duration	I.P.A.
А	7	-	G	3	C D
В	8	-	Н	4	A G
С	8	А	Ι	9	C D E
D	6	В	J	9	C D E
E	5	В	K	5	FHIJ
F	10	В	L	4	FJ

Question Number	Scheme	Marks			
8.					
	Minimise (C) = 660x + 600y	B1			
	Subject to:				
	$20x + 50y \ge 15000 \Longrightarrow 2x + 5y \ge 1500$	1M1 1A1			
	$\frac{2}{5}(x+y) \le x \le \frac{3}{5}(x+y)$	2M1			
	Which simplifies to				
	$2y \le 3x$ and $2x \le 3y$ or equivalent.	2A1, 3A1			
	$(x, y \ge 0)$				
		6 marks			
	Notes				
1B1: CAO	Expression correct and 'minimise'. Accept working in \pounds 's (C) = $6.6x + 6y$				
IMI: Con	1M1: Condone incorrect inequality (but not equals) sign seen here.				
TAT: CAU	Must have $2x$, by and 1500.	2			
2MI: Corr	rect method, dealing with both 40% and 60% of total items – need to see both	$\frac{1}{5}(x + x)$			
y) and $\frac{3}{5}$	(x + y) as part of an inequality (not an equation).				
2A1: CAC	2A1: CAO for the 40% inequality – accept strict inequality				
3A1: CAC) for the 60% inequality – accept strict inequality - may be combined into one	inequality			
SC: if 2A0 integer k .	SC: if 2A0 and 3A0 then award SCA1A0 for either $k(2y) \le k(3x)$ or $k(2x) \le k(3y)$ for any positive integer k.				

PhysicsAndMathsTutor.com

January 2014 (IAL)

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International A Level in Decision Mathematics 1 (WDM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code IA038488 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number					Sc	heme					Mar	ks
	e.g. (m	iddle rig	ght)									
1. (a)									1	Pivots	M1	
	M	S	Q	C	E	P	B	F	0	E	1411	
		B	E	M	S E	Q	P	F	0	B,P	A1	
	B		E F	F	r M	0	P P	0	Q S	(C),F,Q		
	B	C C	E	F	M	0	P	$\frac{Q}{0}$	S	(M)	A1ft	
	Sort co	mplete		-		U	-	×		(111)	A 1	
		I									AI	(4)
(b)	Pivot 1	$=\left[\frac{1+9}{2}\right]$	= 5	McCA	ANN	reject 1	-5				M1	
	D' ()	[2] [6+9]	0	OTIAC	AT T	• • • •	0					
	Pivot 2	$= \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	= 8	QUAC	JLIA	reject 8	-9				A1	
	Pivot 3	$= \left \frac{6+7}{2} \right $	= 7	PATE	L							
	$\mathbf{P} = \mathbf{P}\mathbf{A}$	TEL, na	ame fou	ind (so	3 iterati	ions)					A1	(3)
(c)	e.g. log	2 6 41 =	9.324.	so 10 o	r maxir	num nu	mber o	f items	in eacl	n pass:	M1	
	641, 32	20, 160,	80, 40,	20, 10,	5, 2, 1					- Pussi	A 1	
	so 10 it	terations	5								AI	(2)
											(9 ma	arks)
				N	otes fo	r Quest	tion 1				(9 ma	arks)
				N	otes fo	r Ques	tion 1				(9 ma	arks)
a1M1: Qui	ick sort –	- pivots,	, p, sele	N cted an	l otes fo d first p	r Ques bass giv	t ion 1 es <p, p<="" td=""><td>o, >p. If</td><td>f only o</td><td>choosing on</td><td>(9 ma ne pivot</td><td>arks) per</td></p,>	o, >p. I f	f only o	choosing on	(9 ma ne pivot	arks) per
a1M1: Qui iteration M	ick sort – M1 only.	- pivots,	, p, sele	N cted an	l otes fo d first p	r Ques bass giv	tion 1 es <p, p<="" td=""><td>o, >p. If</td><td>f only o</td><td>choosing on</td><td>(9 ma</td><td>arks) per</td></p,>	o, >p. If	f only o	choosing on	(9 ma	arks) per
a1M1: Qui iteration M a1A1: Firs	ick sort - M1 only. t pass co	- pivots,	, p, sele ext two	N cted an pivots	d first p	r Quest pass giv	tion 1 es <p, p<br="">ly for so</p,>	o, >p. If	f only o	choosing on	(9 ma	per
a1M1: Qui iteration M a1A1: Firs a2A1ft: Se	ick sort - M1 only. t pass co econd and	- pivots, prrect, no d third p	, p, sele ext two passes c	N cted an pivots corrrect	d first p chosen (follow	r Quest bass giv correct throug	tion 1 es <p, p<br="">ly for so h from</p,>	o, >p. I f econd p their fin	f only o bass. rst pass	choosing on s and choice	(9 ma ne pivot	per per
a1M1: Qui iteration M a1A1: Firs a2A1ft: Se and next p a3A1: CS0	ick sort - M1 only. t pass co cond and ivot(s) cl	- pivots, prrect, no d third p hosen co prt com	, p, sele ext two passes c onsister	N cted an pivots corrrect ntly for	d first p chosen (follow fourth p d be sho	r Quest pass giv correct throug pass.	tion 1 es <p, p<br="">ly for so h from her by</p,>	o, >p. If econd p their fin a 'stop'	f only o bass. rst pass	choosing on and choice	(9 ma	per pts) –
a1M1: Qui iteration M a1A1: Firs a2A1ft: Se and next p a3A1: CSC written or	ick sort - M1 only. t pass co ccond and ivot(s) cl D and 'sc using ea	- pivots, prrect, no d third p hosen co prt comp ch item	, p, sele ext two passes c onsister plete' th as a pi	N cted an pivots corrrect ntly for nis could vot.	d first p chosen (follow fourth j d be sho	r Quest bass giv correct throug pass. bwn eit	tion 1 es <p, p<br="">ly for se h from her by a</p,>	o, >p. If econd p their fin a 'stop'	f only o bass. rst pass	choosing on s and choice nent or final	(9 ma ne pivot of pivo	per pts) –
a1M1: Qui iteration M a1A1: Firs a2A1ft: Se and next p a3A1: CSC written or b1M1: Cho	ick sort – M1 only. t pass co cond and ivot(s) cl D and 'sc using ea posing m	- pivots, prrect, no d third p hosen co prt comp ch item hiddle ri	, p, sele ext two passes c onsister plete' th as a piv ght piv	N cted an pivots corrrect ntly for nis could vot. ot (choo	d first p chosen (follow fourth p d be sho	r Quest pass giv correct throug pass. pwn eit	tion 1 es <p, p<br="">ly for so h from her by a eft is M0</p,>	o, >p. If econd p their fin a 'stop' 0) + dis	f only o pass. rst pass ' staten	choosing on and choice nent or final g/retaining 1	(9 ma e pivot of pivo l list re- half the	per ots) –
a1M1: Qui iteration M a1A1: Firs a2A1ft: Se and next p a3A1: CSC written or b1M1: Cho M1 only fo	ick sort - M1 only. t pass co cond and ivot(s) cl D and 'sc using ea oosing m or an 'ind	- pivots, prrect, no d third p hosen co prt comp ch item niddle ri correct'	, p, sele ext two passes c onsister plete' th as a piv ght piv list – a	N cted an pivots corrrect ntly for nis could vot. ot (choo llow 1 e	d first p chosen (follow fourth j d be sho osing m error (e.	r Quest pass giv correct throug pass. own eit iddle le .g. two	tion 1 es <p, p<br="">ly for so h from her by a eft is M(letter in</p,>	o, >p. If econd p their fin a 'stop' 0) + dis iterchar	f only o bass. rst pass staten scardin, nged) o	choosing on s and choice ment or final g/retaining l r 1 omission	(9 ma e pivot of pivo l list re- half the n or 1 ez	per pts) – list. xtra.
a1M1: Qui iteration M a1A1: Firs a2A1ft: Se and next p a3A1: CSC written or b1M1: Cho M1 only fo b1A1: Firs	ick sort – M1 only. t pass co cond and ivot(s) cl D and 'sc using ea posing m or an 'ind st and sec	- pivots, prrect, no d third p hosen co prt comp ch item hiddle ri correct' cond pas	, p, sele ext two passes c onsister plete' th as a piv ght piv list – a sses con	N cted an pivots corrrect ntly for nis could vot. ot (choo llow 1 e rrect i.e	d first p chosen (follow fourth p d be sho osing m error (e. . 5 th and	r Quest pass giv correct throug pass. own eit iddle le	tion 1 es <p, p<br="">ly for so h from her by a eft is M0 letter in ms for a</p,>	o, >p. If econd p their fin a 'stop' 0) + dis iterchar	f only o bass. rst pass staten scardin, nged) o t list a	choosing on s and choice nent or final g/retaining l r 1 omission nd second h	(9 ma e pivot of pivo l list re- half the h or 1 ex half reject	per per ots) – list. ktra. cted
a1M1: Qui iteration M a1A1: Firs a2A1ft: Se and next p a3A1: CSC written or b1M1: Cho M1 only fo b1A1: Firs (no sticky	ick sort - M1 only. t pass co cond and ivot(s) cl D and 'so using ea posing m or an 'ind st and sec pivots).	- pivots, prrect, no d third p hosen co prt comp ch item niddle ri correct' cond pas	, p, sele ext two passes c onsister plete' th as a piv ght piv list – a sses con	N cted an pivots corrrect ntly for nis could vot. ot (choo llow 1 c rect i.e.	d first p chosen (follow fourth j d be sho osing m error (e. . 5 th and	r Quest pass giv correct throug pass. own eit iddle le g. two l 8 th iter	tion 1 es <p, p<br="">ly for so h from her by a eft is M(letter in ns for a</p,>	o, >p. If econd p their fin a 'stop' 0) + dis iterchar i correc	f only o pass. rst pass ' staten scardin, nged) o tt list a	choosing on s and choice nent or final g/retaining l or 1 omission nd second h	(9 ma ne pivot of pivo l list re- half the n or 1 ex- half reject	per ts) – list. ktra. cted
a1M1: Qui iteration M a1A1: Firs a2A1ft: Se and next p a3A1: CSC written or b1M1: Cho M1 only fo b1A1: Firs (no sticky b2A1: CSC (ator, ator	ick sort – M1 only. t pass co econd and ivot(s) cl D and 'sc using ea posing m or an 'ind st and sec pivots). D Third p	- pivots, orrect, no d third p hosen co ort comp ch item niddle ri correct' cond pas pass cor	, p, sele ext two passes c onsister plete' th as a piv ght piv list – a sses con rect i.e.	N cted an pivots corrrect ntly for nis could vot. ot (choo llow 1 c rrect i.e. . 7 th iter	d first p chosen (follow fourth j d be sho osing m error (e. . 5 th and n for a	r Quest bass giv correct throug pass. bwn eit iddle le g. two l 8 th iter correct	tion 1 es <p, p<br="">ly for so h from her by a eft is M(letter in ms for a list + "f</p,>	o, >p. If econd p their fin a 'stop' 0) + dis iterchar a correc found"	f only o bass. rst pass staten scardin, nged) o t list a (accep	choosing on s and choice nent or final g/retaining l r 1 omission nd second h t 'found', 'h	(9 ma ne pivot of pivo l list re- half the half the alf rejection	per pts) – list. cted
a1M1: Qui iteration M a1A1: Firs a2A1ft: Se and next p a3A1: CSC written or b1M1: Cho M1 only fo b1A1: Firs (no sticky b2A1: CSC 'stop', etc. iterations of	ick sort - M1 only. t pass co cond and ivot(s) cl D and 'sc using ea posing m or an 'ind t and sec pivots). D Third p but not loss not	- pivots, prrect, no d third p hosen co prt comp ch item niddle ri correct' cond pas pass cor just the need to	, p, sele ext two passes c onsister plete' th as a piv ght piv list – a sses con rect i.e. letter; i	N cted an pivots corrrect ntly for nis could vot. ot (choo llow 1 e rect i.e. . 7 th iter must be	d first p chosen (follow fourth j d be sho osing m error (e. . 5 th and n for a convin	r Quest pass giv correct throug pass. own eit iddle le .g. two l 8 th iter correct ced tha	tion 1 es <p, p<br="">ly for so h from her by a eft is Mo letter in ns for a list + "f t P has</p,>	o, >p. If econd p their fin a 'stop' 0) + dis iterchar a correc found" been lo	f only of pass. rst pass ' staten scardin, nged) o ut list a (accep scated).	choosing on s and choice nent or final g/retaining l r 1 omission nd second h t 'found', 'le . The numbe	(9 ma e pivot of pivo l list re- half the h or 1 ez half reject ocated', er of	per pts) – list. ctra.
a1M1: Qui iteration M a1A1: Firs a2A1ft: Se and next p a3A1: CSC written or b1M1: Cho M1 only fo b1A1: Firs (no sticky b2A1: CSC 'stop', etc. iterations of Part (c): C	ick sort – M1 only. t pass co cond and ivot(s) cl D and 'sc using ea cosing m or an 'ind t and sec pivots). D Third p but not closs not	- pivots, orrect, no d third p hosen co ort comp ch item niddle ri correct' cond pas pass cor just the need to tes who	, p, sele ext two passes c onsister plete' th as a pir ght piv list – a sses con rect i.e. letter; n be stat	N cted an pivots corrrect ntly for nis could vot. ot (choo llow 1 c rect i.e. . 7 th iter must be ed expli	d first p chosen (follow fourth p d be sho osing m error (e. . 5 th and n for a convin icitly.	r Quest bass giv correct throug pass. Dwn eith iddle le .g. two l 8 th iter correct ced tha	tion 1 es $<$ p, p ly for so h from her by a letter in ms for a list + "f t P has r of val	b, >p. If econd p their fin a 'stop' 0) + dis iterchar a correc found" been lo	f only o bass. rst pass rst pa	choosing on s and choice hent or final g/retaining l r 1 omission nd second h t 'found', 'le The numbe	(9 ma ne pivot of pivo l list re- half the h or 1 ez half rejector ocated', er of	per per ots) – list. cted
a1M1: Qui iteration M a1A1: Firs a2A1ft: Se and next p a3A1: CS0 written or b1M1: Cho M1 only fo b1A1: Firs (no sticky b2A1: CS0 'stop', etc. iterations of Part (c): C	ick sort – V11 only. t pass co cond and ivot(s) cl D and 'sc using ea oosing m or an 'ind t and sec pivots). D Third p but not closes not Candidat I for at le	- pivots, prrect, no d third p hosen co prt comp ch item hiddle ri correct' cond pas pass cor just the need to tes who east 641	, p, sele ext two passes c onsister plete' th as a piv ght piv list – a sses con rect i.e. letter; n be stat consid , 320, 1	N cted an pivots corrrect ntly for nis could vot. ot (choo llow 1 e rect i.e . 7 th iter must be ed expli ler max . 60, 80,	d first p chosen (follow fourth p d be sho osing m error (e. . 5 th and n for a convin icitly. cimum	r Quest pass giv correct throug pass. own eit iddle le g. two l 8 th iter correct ced tha numbe embedo	tion 1 es $<$ p, p ly for so h from her by a eft is M0 letter in ms for a list + "f t P has r of val ded in a	b, >p. I f econd p their fin a 'stop' 0) + dis iterchar a correct found" been lo lues at a calcula	f only o pass. rst pass staten scardin, nged) o rt list a (accep cated). the sta ation e	choosing on s and choice nent or final g/retaining l r 1 omission nd second h t 'found', 'le The numbe art of each i	(9 ma a pivot a of pivot b of pivot c of pivot l list re- half the h or 1 ex- half reject ocated', er of iteration / 2 = 32	per per ots) – list. stra. cted n: 1.
a1M1: Qui iteration M a1A1: Firs a2A1ft: Se and next p a3A1: CSC written or b1M1: Cho M1 only fo b1A1: Firs (no sticky b2A1: CSC 'stop', etc. iterations c Part (c): C • M1 [32]	ick sort - V11 only. t pass co cond and ivot(s) cl D and 'so using ea oosing m or an 'ind it and sec pivots). D Third p but not loes not Candida I for at le (0 + 1) / 2	- pivots, prrect, no d third p hosen co prt comp ch item niddle ri correct' cond pas pass cor just the need to tes who east 641 2 = 161	, p, sele ext two passes c onsister plete' th as a piv ght piv list – a sses con rect i.e. letter; 1 be stat consid , 320, 1 , [160 +	N cted an pivots corrrect ntly for nis could vot. ot (choo llow 1 c rect i.e. . 7 th iter must be ed expli- ler max . 60, 80, - 1] / 2 =	d first p chosen (follow fourth j d be sho osing m error (e. . 5 th and n for a c convin icitly. cimum or = 81, [8	r Quest pass giv correct throug pass. bwn eit iddle le g. two l 8^{th} iter correct ced tha numbe embed 80 + 1]	tion 1 es $<$ p, p ly for so h from her by so eft is M(letter in ms for a list + "f t P has t P has t of val ded in a (2 =)	b, >p. If econd p their fin a 'stop' 0) + dis terchar a correct found" been lo lues at a calcula	f only of pass. rst pass rst p	choosing on s and choice nent or final g/retaining l or 1 omission nd second h t 'found', 'le The numbe ort of each i .g. [641+1]	(9 ma a pivot a of pivot b of pivot c of pivot l list re- half the h or 1 ex- half reject ocated', er of (teration /2 = 32	per per ots) – list. cted n: 1,
a1M1: Qui iteration M a1A1: Firs a2A1ft: Se and next p a3A1: CS0 written or b1M1: Cho M1 only fo b1A1: Firs (no sticky b2A1: CS0 'stop', etc. iterations of Part (c): C • M1 [32 • M1	ick sort – VI1 only. t pass co cond and ivot(s) cl D and 'sc using ea cosing m or an 'ind t and sec pivots). D Third p but not closs not Candidat I for at lef (0 + 1] / 2	- pivots, orrect, no d third p hosen co ort comp ch item niddle ri correct' cond pass pass cor just the need to tes who east 641 2 = 161 , 320, 1	, p, sele ext two passes c onsister plete' th as a piv ght piv list – a sses con rect i.e. letter; 1 be stat consid , 320, 1 , [160 + 60, 80,	N cted an pivots corrrect ntly for nis could vot. ot (choo llow 1 e rect i.e. . 7 th iter must be ed expli- ler max . 60, 80, 1] / 2 = . 40, 20,	d first p chosen (follow fourth p d be sho osing m error (e. . 5 th and n for a convin icitly. cimum or = 81, [8 10, 5, 2	r Quest pass giv correct throug pass. own eit iddle le g. two 1 8 th iter correct ced tha numbe embedd 30 + 1]/ 2, 1 so 1	tion 1 es $<$ p, p ly for so h from her by a eft is M0 letter in ms for a list + "f t P has r of val ded in a $2 = \dots$ 10 iterat	o, >p. I f econd p their fin a 'stop' 0) + dis iterchar a correc found" been lo lues at a calcula	f only o bass. rst pass staten scardin, nged) o t list a (accep acated). the sta ation e	choosing on s and choice nent or final g/retaining l r 1 omission nd second h t 'found', 'h The numbe ort of each i .g. [641+1]	(9 ma e pivot e of pivot l list re- half the h or 1 ex- half reject ocated', er of iteration / 2 = 32	per per ots) – list. cted n: 1,
a1M1: Qui iteration M a1A1: Firs a2A1ft: Se and next p a3A1: CSC written or b1M1: Cho M1 only fo b1A1: Firs (no sticky b2A1: CSC 'stop', etc. iterations of Part (c): C • M1 [32 • M1 Candidate	ick sort - V11 only. t pass co cond and ivot(s) cl D and 'sc using ea posing m or an 'ind t and sec pivots). D Third p but not cloes not Candida L for at le 20 + 1] / 2 A1 641 es who c	- pivots, prrect, no d third p hosen co prt comp ch item niddle ri correct' cond pas pass cor just the need to tes who east 641 2 = 161 , 320, 1 onsider	, p, sele ext two basses c onsister plete' th as a piv ght piv- list – a sses con rect i.e. letter; 1 be stat consid , 320, 1 , [160 + 60, 80, * maxim	N cted an pivots corrrect atly for is could vot. ot (choo llow 1 e rect i.e. . 7 th iter must be ed expli ler max .60, 80, - 1] / 2 = 40, 20, num nu	d first p chosen (follow fourth p d be sho osing m error (e. . 5 th and m for a convin icitly. ximum or = 81, [8 10, 5, 2 imber	r Quest pass giv correct throug pass. own eit iddle le g. two 1 l 8 th iter correct ced tha numbe embed 0 + 1 2, 1 so 1 of value	tion 1 es $<$ p, p ly for so h from her by so eft is M0 letter in ms for a list + "f t P has r of val ded in a (2 =) l0 iterates at th	o, >p. If econd p their fin a 'stop' 0) + dis aterchar a correct found" been lo lues at a calculations e end o	f only of pass. rst pass ' staten scardin, nged) o tt list a (accep cated). the sta ation e	choosing on s and choice nent or final g/retaining l r 1 omission nd second h t 'found', 'le The numbe art of each i .g. [641+1]	(9 ma a pivot a of pivot a of pivot b	per per ots) – list. cted n: 1,
a1M1: Qui iteration M a1A1: Firs a2A1ft: Se and next p a3A1: CSC written or b1M1: Cho M1 only fo b1A1: Firs (no sticky b2A1: CSC 'stop', etc. iterations c Part (c): C • M1 [32 • M1 Candidate • M1	ick sort - V11 only. t pass co cond and ivot(s) cl D and 'sc using ea posing m or an 'ind at and sec pivots). D Third p but not cloes not Candidat I for at left Candidat I for at left S who c I for at left	- pivots, prrect, no d third p hosen co prt comp ch item niddle ri correct' cond pas pass cor just the need to tes who east 641 2 = 161 , 320, 1 onsider east 320	, p, sele ext two passes c onsister plete' th as a pir ght piv- list – a sses con rect i.e. letter; 1 be stat o consid , 320, 1 , [160 + 60, 80, , maxim	N cted an pivots corrrect ntly for nis could vot. ot (choo llow 1 c rect i.e. 7 th iter must be ed expli- ler max 60, 80, - 1] / 2 = 40, 20, mum m	d first p chosen (follow fourth p d be sho osing m error (e. . 5 th and n for a convin icitly. cimum or = 81, [8 10, 5, 2 imber o	r Quest bass giv correct throug pass. bwn eit iddle le g. two 1 8 th iter correct ced tha numbe embedd 30 + 1] / 2, 1 so 1 of value	tion 1 es $<$ p, p ly for so h from her by so eff is M(letter in ms for a list + "f t P has r of val ded in a 2 = l0 iterat	o, >p. If econd p their fin a 'stop' 0) + dis terchar a correct found" been lo lues at a calcula tions e end o	f only o pass. rst pass ' staten scardin, nged) o t list a (accep scated). the sta ation e of each	choosing on s and choice hent or final g/retaining l r 1 omission nd second h t 'found', 'l The numbe ort of each i .g. [641+1] iteration:	(9 ma ne pivot of pivot l list re- half the n or 1 ex half reject ocated', er of iteration /2 = 32	n: 1, arks) per per per per per per per per per per

Questior Number	Scheme	Marks
Other nu	imerical arguments	
(The may	timum number of iterations is the least integer value of <i>n</i> such that)	
• N	If $2^n > 641$ then either taking logs of both sides and attempt to solve for n (ac	cept
2	n = 641) or stating $n = 9.32$ (answer given correct to 1 dp).	1
• N	I1 A1 the above with $n = 10$ (no errors if calculation seen) (allow recovery from	n equals).
• N	I1 those candidates who state $2^n > 641$ and state $n = 10$ with no working unles	ss 2 ⁹ also
С	onsidered.	
• N	$11 \log_2 641 = \cdots$	
• N	$\mathbf{I1} \mathbf{A1} \dots = 9.32 \dots$ (answer given correctly to 1 dp) and hence 10.	
$\bullet \frac{6^2}{2}$	considered with $n = 10$ is M1 showing explicitly that $n = 10$ is the first value	e that give
V	alue less that 1 gets A1 (it is not sufficient to just say that $\frac{641}{2^{10}}$ is less than 1 either	$\frac{641}{1024}$ or
0.	625 (correct to 1 dp) must be seen).	
• C	andidates who say that halving 641 ten times gives a value less than 1 (or equal	to 1) M1
0	hly . Accept = 1 as when candidates talk about halving/dividing by 2 it is not alw	ays clear if
th	ey mean half the list or half the numbers in the list. However if the candidate ex	plicitly
si	hows that halving 641 ten times gives a value less than 1 which must be given en	ther exactly
O	Correct to 1 dp then A1.	
• A	n answer of 10 with no working MU	

									Pivots
Μ	S	Q	С	Ε	Р	В	F	0	E
С	В	Е	Μ	S	Q	Р	F	0	C,Q
В	С	Е	Μ	Р	F	0	Q	S	(B), P, (S)
В	С	Е	Μ	F	0	Р	Q	S	F
В	С	Е	F	Μ	0	Р	Q	S	M
В	С	E	F	Μ	0	Р	Q	S	(0)

Sort complete

		-	
Question Number	Scheme	Mai	'ks
	(i) Complete matching: A matching where every member of set X is	B1	
2. (a)	paired with a single member of set Y and vice-versa.	R1	
	(ii) Difference: A maximal matching is where the number of edges is as	DI	
	large as possible without necessarily pairing all vertices. A complete matching pairs all vertices.	B1	(3)
(b)	E.g.		
	Alternating path: $C - L = A - O$		
	Improved matching: $A = O$ $B = M$ $C = I$, $E = N$ $F = P$	A1 A1	(3)
			(0)
(c)	Εσ		
	Alternating path: $D - M = B - K$	M1	
	Change status: $D = M - B = K$	Al	(2)
	Complete matching: $A = O$, $B = K$, $C = L$, $D = M$, $E = N$, $F = P$	AI	(3)
		(9 ma	arks)
	Notes for Question 2		
a1B1: Con a2B1: Con mentioned a3B1: Diff b1M1: An b1A1: CA0 b2A1: CA0 only). c1M1: An vice versa) c1A1: CA0 c2A1: CA0 awarded).	nplete: pairing or one to one. nplete: all elements from one set with all elements of the other ('all' and 'set' is at least once). erence: all compared to at most . Give bod but must mention 'all' compared to alternating path from C to O or K (or vice versa). O – a correct path including change status either stated or shown. Chosen path O must follow from the correct stated path. Accept on a clear diagram (with fir alternating path from D to K or O, whichever one (of O or K) they didn't use is O – a correct path including change status either stated or shown. Chosen path D – a correct path including change status either stated or shown. Chosen path Accept on a clear diagram (with six arcs only).	must be o 'at mo clear. ve arcs in (b) (o clear. nave be	ost'. or en
Improved	matching:		

Path 1	Α	B	С	D	Ε	F
C-L-A-O	0	М	L		Ν	Р
C-L-A-K	Κ	Μ	L		Ν	Р

Complete matching:

C-L-A-OD-M-B-KOKLMNC-L-A-OD-N-E-KOMLNK	Р
C-L-A-O D-N-E-K O M L N K	_
	Р
C-L-A-K D-M-B-K-A-O O K L M N	Р
C-L-A-K D-N-E-K-A-O O M L N K	Р

Question Number	Scheme	Marks
3. (a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 (ABCD) A1 (FEG) A1ft (HT)
	Quickest route is ACBEGT	A1
	Length of quickest route is 40 (minutes)	B1ft (6)
(b)	Quickest journey A to F is ACDF So quickest journey A to T via F is ACDFHT = 43 (minutes)	M1 A1 (2)
(c)	e.g. Add 2 to each arc except GT and HT (or AB, AC and AD)	M1 A1 (2)
	Notes for Question 3	(10 marks)
a1M1: A 1 F or G. a1A1: All order of la a2A1: All labelling e a3A1ft: Al order. Pen a4A1: CA a1B1ft: Fo T. b1M1: An b1A1: 43 a c1M1: Val c1A1: CA	arger value replaced by smaller value at least once in the working values at either values in boxes A, B, C and D correct and the working values in the correct order belling. values in boxes F, E and G correct and the working values in the correct order. Per rors only once per question. I values in boxes H and T correct on the follow through and the working values in alise order of labelling only once per question. O for the route. Ilow through on their final value at T – if their answer is not 40 follow through th y path from A to T via their shortest path from A to F. and ACDFHT id general method – any mention of adding 2 to the weight of the arcs. O – so adding 2 to each arc except {GT, HT} or {AB, AC, AD}.	B or D or E or , including enalise order of n the correct eir final value at

Question Number	Scheme	Marks		
4. (a)	 E.g. (any three) Kruskal starts with the shortest arc, Prim starts with any node. It is necessary to check for cycles when using Kruskal (or it is not necessary to check for cycles when using Prim). When using Prim the 'growing' tree is always connected. When using Kruskal arcs are considered in ascending order of weight. Prim can be used when the network is given in matrix form. Prim add nodes to the growing tree. Kruskal adds arcs. 	B1 B1 B1 (3)		
(b)	DE, EB, BL, LF, BH; HG, GA, ES; SP, MP, AR	M1 A1 A1 (3)		
(c)	ES + LG = 24 + 15 = 39 smallest EL + S(FL)G = 17 + 55 = 72 E(L)G + L(F)S = 32 + 40 = 72	M1 A1 (2 correct) A1 (3 correct)		
(d)	Repeat ES and LG The caretaker should repeat EL(17) as it is the minimum pair not including G (ES: 24, EL: 17, LS: 40) Therefore he should (start at G and) finish at S Length of route: 341 + 17 = 358 (metres)	A1 (4) M1 A1 A1 (3)		
	Notes for Question 4	(13 marks)		
In (a) all t	echnical language must be correct (so do not accept point for vertex/noc	le etc.).		
 a1B1: Any one correct difference. a2B1: Any two correct differences. a3B1: Any three correct differences. b1M1: First five arcs correctly chosen in order (do not accept weights) or first six nodes correctly chosen in order. {D,E,B,L,F,H}. If any rejections seen at any point then M1 (max) only. 				
 b1A1: First eight arcs correctly chosen in order or all nodes correctly chosen in order. {D,E,B,L,F,H,G,A,S,P,M,R}. b2A1: CSO – all arcs correctly stated. Misread: Starting at a node other than D scores M1 only – must have the first five arcs (or six nodes) correct (and in the correct order). 				
c1M1: Thr c1A1: Tw c2A1: Thr c3A1: (Rej	ee pairings of the correct four odd nodes. o rows correct including pairing and total. ee rows correct including pairing and total. peat) ES and LG.			
d1M1: Ider (maybe im Stating any d1A1: Ider	ntified the need to repeat one path of the three (ES, EL, LS) which does no plicit) or listing of possible repeats - if M0 in (c) must state all three possi y path (ES, EL, LS) is sufficient for this mark. In tifies EL as the least of those paths not including G. They have to expla- east path that does not include G or they can list all three paths and then so	ot include G ble paths. icitly state that		
least. d2A1: CA	O - finish at S and length of route 358.			

a1B1: CAO

b1B1: 3x + 5y = 1000 passing through one small square of (0, 200), (200, 80), (333 $\frac{1}{2}$, 0).

b2B1: y = 2x passing through one small square of (0, 0), (100, 200), (150, 300).

b3B1: 4y - x = 210 passing through one small square of (0, 52.5), (200, 102.5), (400, 152.5).

b4B1: Region, R, correctly labelled – not just implied by shading – must have scored all three previous marks in this part.

cB1: CAO - correct expression.

d1M1: Attempt to solve two of the correct equations simultaneously, up to $x = \dots$ or $y = \dots$

d1A1: At least 1 correct R vertex found correct to at least 2dp (rounded or truncated) - (30, 60), (76.923..., 153.846...), (173.529..., 95.705...). If any vertex is stated correctly (with or without working) then this scores M1A1.

d2A1: All correct R vertices found **exactly. Must** be working for determining points B and C. $B\left(\frac{1000}{13},\frac{2000}{13}\right), C\left(\frac{2950}{17},\frac{1630}{17}\right)$

d2M1: Evaluating the correct objective function at at least two of their points for their feasible region allow this mark if vertices have been read off their graph. Condone for this M mark those candidates who state their coordinates and then test the 'nearest' integer values. E.g. if they state (76.9, 153.8) then allow for the M mark those that test either one of (76, 153), (77, 153), (76, 154) or (77, 154) only – maybe implied by their value for P.

d3A1: All three correct P values either given exactly $\left\{90, \frac{3000}{13}, \frac{4580}{17}\right\}$ or to at least 1 dp (rounded or truncated) {90, 230.769 ..., 269.411 ... }. They must be testing the exact coordinates for this mark. d3M1: Testing the correct inequalities for at least two of (173, 95), (173, 96), (174, 95), (174, 96). d4A1: CSO (all previous marks in (d) must have been awarded) accept x = 173 and y = 96 or as coordinates.

In (a) condone lack of, or incorrect, numbered events throughout – also 'dealt with correctly' means that the activity starts from the correct event but not necessarily finishes at the correct event. Activity on node is M0. Ignore incorrect or lack of arrows for the first four marks in (a) only.

a1M1: 7 activities (labelled on arc) and one dummy placed.

a1A1: One start + activities A, B, C and E dealt with correctly.

a2A1: Activities D, F, G, H and J and the 1^{st} dummy dealt with correctly. a3A1: Activities I, K and the 2^{nd} and 3^{rd} dummies dealt with correctly.

a4A1: CSO - all arrows present and correctly placed with one finish.

b1B1: dependency + some explanation of what this means, generous – allow a correct example based on the correct network diagram in the MS (not based on their diagram).

b2B1: uniqueness – please note that e.g. 'so that activities can be defined uniquely' is **not** sufficient to earn this mark. There must be some mention of describing activities in terms of the event at each end. However, give bod on statements that imply that an activity begins and ends at the same event.

Question Number	Scheme	Marks
7.(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 A1 (3)
(b)	ADFJ Length 22	B1 B1 (2)
(c)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M1 A1 M1 A1 (4)
(d)	i) D & E ii) J & G	B1 B1 (2)
(e)	e.g. Worker 1 $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 A1 A1 (3) (14 marks)

a1M1: All top boxes and all bottom boxes completed. Values generally increasing from left to right (for top boxes), and values generally decreasing from right to left (for bottom boxes). Condone missing 0 or 22 for M only (for bottom boxes). Condone one rogue value in top boxes and one rogue value in bottom boxes. a1A1: CAO for top boxes.

a2A1: CAO for bottom boxes.

b1B1: CAO path.

b2B1: CAO length.

c1M1: At least 8 different activities including at least 4 floats.

c1A1: Critical activities dealt with correctly.

c2M1: The correct 11 activities (only once) including at least 7 floats.

c2A1: Non-critical activities dealt with correctly.

d1B1: CAO

d2B1: CAO

e1M1: 2 lines for 2 workers or 3 lines for 3 workers, all 11 activities present (just once) with time ≤ 25 .

e1A1: 2 workers. Condone one error either precedence or activity length. Time must be 25.

e2A1: 2 workers. No errors.

Duration	IPA
4	-
3	-
3	A, B
7	A, B
5	В
4	D, E
6	D, E
2	С
4	С
7	F, H
4	F, H, I
	Duration 4 3 3 7 5 4 6 2 4 7 4

PMT

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Decision Mathematics 1R (6689/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2014 Publications Code UA038492 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- •All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- •Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- •All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- •Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

PMT

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks			
1. (a) (b)	Bin 1: 31 10 19 Bin 2: 38 12 Bin 3: 45 Bin 4: 47 Bin 5: 35 Bin 6: 28 e.g. middle right 31 10 38 45 19 47 35 28 12 Pivot 19 31 38 45 47 35 28 12 Pivots 47, 12 47 31 38 45 35 28 19 10 12 Pivots 47, 12 47 31 38 45 35 28 19 12 10 Pivots 45 (10) 47 45 31 38 35 28 19 12 10 Pivot 28 (38) 47 45 38 35 31 28 19 12 10 Sort complete)	M1 A1 A1 (3) M1 A1 A1ft A1 (4)			
(c) (d)	Bin 1: 47 12 Bin 2: 45 10 Bin 3: 38 19 Bin 4: 35 Bin 5: 31 28 $\frac{265}{60} \approx 4.417$ so yes 5 bins is optimal	M1 A1 (2) M1 A1 (2) M1 A1 (2) 11 marks			
	00 Notes for Question 1	11 marks			
a1M1: Firs	st four items placed correctly in bins 1, 2 and 3. (Condone cumulative totals he	ere only.)			
a1A1: First eight terms placed correctly. a2A1: CSO – all correct. b1M1: Quick sort – pivots, p, selected and first pass gives $\langle p, p, \rangle p$. If only choosing one pivot per iteration M1 only . b1A1: First pass correct, next two pivots chosen correctly for second pass. b2A1ft: Second and third passes correct (follow through from their first pass and choice of pivots) – and net pivot(s) chosen consistently for fourth pass. b3A1: CSO including choice of pivots for the fifth pass and 'sort complete' – this could be shown either by a 'stop' statement or final list being re-written or using each item as a pivot. c1M1: Must be using list in descending order (independent of (b)). First seven terms placed correctly. c1A1: CAO d1M1: E.g. Attempt to find lower bound (265 ± 47) / 60, (oe) could remark on number of items >30. The argument must be numerical in nature. d1A1: CSO including 5. SC for (c) : if the 'sorted' list they use in (c) has one 'error' from (b) (e.g. a missing number, an extra number or one number incorrectly placed) then M1 only can be awarded in (c) (for the first seven items). If there is more than one 'error' then M0. Allow full marks in (c) if a correct list is used in (c) even if the list is incorrect at the end of (b).					

Ques Num	tion ber	Scheme			М	arks					
Sortin • •	 Sorting list into ascending order in (b) If the candidate sorts the list into ascending order and reverse the list in (b) then they can score full marks in (b). If the list is not reversed in (b) then mark as a misread (so remove the last two A marks earned in (b)). If the list is reversed at the start of (c) but not in (b) then still treat this as a misread. If the list is still in ascending order in (c) award no marks for first fit increasing. If the candidate says that the list needs reversing in (b) but doesn't actually show the reversed list in (b) then remove the final A mark in (b). 										
Misro •	 Misreads If they have misread a number at the start of (a), so genuinely miscopied a number (before starting the question) then please mark the whole question as a misread (so remove the final two A/B marks earned). If they make an error during the quick sort then mark this as an error. They can still earn the M mark in (c) (see SC above). 								efore inal two 1 the M		
Midd	le left										
31 31 47 47 47 47	10 38 45 45 45 45	38 45 31 38 38 38	45 47 38 31 35 35	19 35 35 <u>35</u> 31 31	47 28 28 28 28 28 28	35 <u>19</u> <u>19</u> <u>19</u> <u>19</u> <u>19</u>	28 10 12 12 12 12	12 12 10 10 10 10	Pivot 19 Pivot 45, 10 Pivot (47), 38 Pivot 35 Pivot 31 list in order	3, (12)	M1 A1 A1ft A1cso
Ascer	nding o	rder (m	iddle rig	ght)							
31 10 10 10 10 10	10 12 12 12 12 12	38 19 19 19 19 19	45 31 31 31 31 28	19 38 38 38 28 31	47 45 <u>35</u> 35 35	35 47 35 28 <u>38</u> 38	28 35 28 45 45 45	12 28 47 47 47 47	Pivot 19 Pivot 12, 47 Pivot (10), 45 Pivot 35 Pivot 28, (38 list in order	5	M1 A1 A1ft A1cso
Ascending order (middle left)											
31 10 10 10 10	10 12 12 12 12 12	38 19 19 19 19 19	45 31 31 31 <u>31</u> 28	19 38 38 35 28 31	47 45 35 28 <u>35</u> 35	35 47 28 <u>38</u> <u>38</u> <u>38</u>	28 35 45 45 45 45	12 28 47 47 47 47	Pivot 19 Pivot 10, 45 Pivot (12), 38 Pivot 35 Pivot 31 list in order	3, (47)	M1 A1 A1ft A1cso

Question Number	Scheme		Marks	
2. (a)	e. g. Activities 1 and 3 both can only be done by Hugo			
(b)	J to 1 should be chosen e. g. J to 1 would release H to do 3. e. g. if H is retrained then tasks 1 and 3 can still only be done by H.	M1 A1	(2)	
(c)	A - 2 = P - 4 = C - 5 = J - 1 = H - 3 Change status $A = 2 - P = 4 - C = 5 - J = 1 - H = 3$ Complete matching: $A = 2$, $C = 5$, $H = 3$, $J = 1$ and $P = 4$	M1 A1 A1 7 marks	(3)	
	Notes for Ouestion 2			
a1B1: A statement with the correct employees and tasks that attempts a reason why a complete matching is not possible. BOD gets the mark here. Note e.g. 'Hugo is the only one who can do both 1 and 3' or 'Hugo can only do 1 and 3' are both B1 only. a2B1: Fully correct, including all pertinent names and activities. No incorrect information given. b1M1: J to 1 selected with a reason given. One of H, 1 or 3 must be mentioned. b1A1: A correct reason given – must explicitly explain why J with 1 allows a complete matching to occur e.g. H can now do 3, or the candidate explains that if Hugo is re-trained there are still two tasks, 1 and 3, that can only be done by one employee, H. c1M1: An alternating path from A to 3 (or vice versa). c1A1: CAO – a correct path including change status either stated or shown. Chosen path clear. c2A1: CAO must follow from the correct stated path. Accept on a clear diagram (with five arcs only).				

Question Number	Scheme	Marks			
4. (a)	$\begin{array}{lll} B(E)D+FI &=& 32+38=70\\ B(C)F+D(E)I &=& 25+36=61*\\ B(E)I+D(E)F &=& 20+52=72\\ Length =& 359+61=420 \end{array}$	M1 A1 A1 A1 A1ft	(5)		
(b)	Time taken = $\frac{420}{15} \times 120 = 3360$ (seconds)	M1 A1	(2)		
(c)	e.g. If we start at an odd vertex we will finish at another odd vertex. This removes the need to repeat the route between them. So we just have to consider one repeated route rather than two.	B2,1,0	(2)		
(d)	Choose to repeat the shortest route BI (20) Therefore start at D (and finish at F) New length = $359 + 20 = 379$	B1 B1 B1			
	Time taken = $\frac{379}{15} \times 120 + 2 \times 119 = 3270$ (seconds)	B1	(4)		
	Notes for Question 4	15 mai ks			
Notes for Question 4a1M1: Three pairings of the correct four odd nodes.a1A1: One row correct including pairing and total.a2A1: Two rows correct including pairing and total.a3A1: Three rows correct including pairing and total.a4A1ft: 420 or 359 + their least.b1M1: Their length \div 15 × 120 – from at least two totals seen in (a).b1A1: CAOc1B1: One of (i) idea of finishing at an odd vertex (ii) only having to repeat one route rather than two.c2B1: Correct complete argument – including both (i) and (ii) from c1B1.d1B1: Identifies BI as the shortest route.d2B1: start at D – dependent on identifying BI (20) as the repeat.d3B1: CAOd4B1: CAO					

PMT

Notes for Question 5

In (a) lines **must** pass through one small square of the points stated:

7x + 8y = 840 passes through (0, 105), (40, 70), (80, 35), (120, 0) 4y = 5x passes through (0, 0), (40, 50), (80, 100) 5y = 3x passes through (0, 0), (50, 30), (100, 60)

a1B1: One line other than x = 25 or y = 25 correctly drawn.

a2B1: Two lines other than x = 25 or y = 25 correctly drawn.

a3B1: All five lines correctly drawn.

a4B1: Region, R, correctly labelled – not just implied by shading – must have scored all three previous marks in this part.

b1M1: Drawing the correct objective line or its reciprocal. Line must be correct to within one small square if extended from axis to axis.

b1A1: Correct objective line.

b2A1: V labelled clearly on their graph. This mark is dependent on the correct five line segments that define the boundary of the feasible region.

cM1: Simultaneous equation being used to find **their** V (but not from x = 25 or y = 25). Must get to x = ... and y = ...

cA1: Correct coordinates of V stated **exactly** as $\left(\frac{840}{17}, \frac{1050}{17}\right)$ or $\left(49\frac{7}{17}, 61\frac{13}{17}\right)$. If the correct coordinates are stated exactly with no working then this scores M1A0.

d1M1: Testing the correct inequalities for at least three of (49, 61), (49, 62), (50, 61), (50, 62). d1A1: CAO (50, 61).

a1M1: All top boxes complete, values generally increasing left to right, condone one rogue. a1A1: CAO

a2M1: All bottom boxes complete, values generally decreasing right to left, condone one rogue. Condone missing 0 **or** 22 for the M only.

a2A1: CAO

b1M1: Correct calculation for their activity D seen – their three numbers correct. Final value must be non-negative.

b1A1: CAO – no ft on this mark. The answer of 4 (with no working) scores no marks.

c1M1: Attempt to find lower bound: [42-62 / their finish time].

c1A1: CAO – correct calculation seen then 3. No working scores M0 A0.

d1M1: Not a cascade chart. 3 'workers' used at most and at least 7 activities placed.

d2A1: 3 workers. All 11 activities present (just once). Condone one error either precedence, time interval or activity length.

d3A1: 3 workers. All 11 activities present (just once). No errors.

For reference:

Activity	Duration	Time interval	IPA
А	4	0-7	-
В	5	0 – 5	-
С	3	0 – 5	-
D	4	4 - 12	А
Е	2	4 – 9	А
F	3	5 – 9	В
G	4	5 – 9	B, C
Н	6	9 – 15	E, F, G
Ι	4	9 – 15	G
J	10	9 – 22	D, E, F
Κ	7	15 – 22	H, I

Question Number	Scheme	Marks			
8.	Minimise $C = 3x + 2y$	B1			
	Subject to:				
	$x + y \ge 1000$	B1			
	$\frac{1}{4}(x+y) \le x$, simplifies to $y \le 3x$	M1 A1			
	$2x \le y$	M1 A1			
	$(x, y \ge 0)$				
		6 marks			
	Notes for Question 8				
1B1: CAC) – expression correct and 'minimise'.				
2B1: CAC	2B1: CAO				
1M1: Correct method – must see $\frac{1}{4}(x+y) \equiv x$ where \blacksquare is any inequality or =. The bracket must be					
present or implied by later working. $\overset{4}{}$					
1A1: CAO – simplified – answer must have integer coefficients.					
2M1: Correct method – one of $2x \equiv y$ or $x \equiv 2y$ where \blacksquare is any inequality or =.					
2A1: CAO – answer must have integer coefficient.					
Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Decision Mathematics 1 (6689/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code UA038482 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks	
1.(a)	AG, DG, AF; AE BG; CD	M1 A1 A1	(3)
(b)	F• G G D C	B1	(1)
(c)	Weight of tree = 298 (s)	B1 5 marks	(1)
	Notes for Question 1		

a1M1: First three arcs correctly chosen in order (AG, DG, AF, ... or weights 42, 41, 48, ...) or first four nodes correctly chosen in order. {A.G,D,F,...} If any rejections seen at any point then M1 (max) only. Order of nodes may be seen at the top of the matrix $\{1, -, -, 3, -, 4, 2\}$ so please check the top of the matrix carefully.

a1A1: First five arcs correctly chosen in order (AG, DG, AF, AE, BG or weights 42, 41, 48, 50, 58,...) or all seven nodes correctly chosen in order. $\{A,G,D,F,E,B,C\}$. Order of nodes may be seen at the top of the matrix so for the first two marks accept $\{1, 6, 7, 3, 5, 4, 2\}$ (do not condone any missing numbers e.g. the number 7 must be above C).

a2A1: CSO - all **arcs** correct and chosen in the correct order. They must be considering arcs for this final mark (do not accept a list of the weights of each arc, nodes or numbers across the top of the matrix unless the correct list of arcs (in the correct order) is also seen).

Misread: Starting at a node other than A scores **M1 only** – **must** have the first three arcs (or four nodes or numbers) correct (and in the correct order).

Starting at	Minimum arcs	Nodes	Order
	required for M1		
А	AG DG AF	AGDF(EBC)	1(6)(7)3(5)42
В	BG DG AG	BGDA(FEC)	41(7)3(6)(5)2
С	CD DG AG	CDGA(FEB)	4(7)12(6)(5)3
D	DG AG AF	DGAF(EBC)	3(6)(7)1(5)42
Е	EA AG DG	EAGD(FBC)	2(6)(7)41(5)3
F	FA AG DG	FAGD(EBC)	2(6)(7)4(5)13
G	GD AG AF	GDAF(EBC)	3(6)(7)2(5)41

b1B1: CAO (condone lack of weights on arcs).

c1B1: CAO (condone lack of units).

Question Number	Scheme	Mark	S
2. (a)	A = 2 $B = 3$ $G = 7$ F $C = 4$ $E = 5$ $H = 8$	M1 A1 A1 A1 A1	(5)
(b)	1^{st} dummy – A and B both must be able to be described uniquely in terms of the events at each end. 2^{nd} dummy – I depends on D only but J depends on D and G.	B1 B1 7 marks	(2)

Throughout part (a) condone lack of numbered events throughout – also 'dealt with correctly' means that the activity starts from the correct event (but not necessarily finishing at the correct event) e.g. 'H dealt with correctly' requires F and E leading into the same event and H starting from that event (but not necessarily H leading into K). Activity on node is M0.

a1M1: 7 activities and one dummy placed.

a1A1: One start + activities A, B, C and E dealt with correctly.

a2A1: Activities D, F, G, H and K and the 1st dummy dealt with correctly.

a3A1: Activities I and J and the 2nd dummy dealt with correctly.

a4A1: CSO (all four previous marks must have been awarded) - **all** arrows present and correctly placed with one finish – condone lack of arrows for the first four marks only. No 'extra' activities.

Note that another valid solution would be the dummy going from event 3 to event 2 and D, G and F coming out of event 2. Or the candidate could start with a dummy from event 1 to ensure the uniqueness of activities A and B.

b1B1: CAO – with no incorrect terminology (e.g. event for activity) - please note that e.g. 'so that activities can be defined uniquely' is not sufficient to earn this mark. There must be a mention of describing activities uniquely **in terms of the events at each end**. However give bod on statements that imply that an activity begins and ends at the same event e.g. 'so that activities do not have the same start and finish' is sufficient for B1.

b2B1: CAO – all relevant activities must be referred to – so activities D, G, I **and** J must all be mentioned for this mark.

0		1							
Question Number	Scheme	Marks							
	D(A)E + F(J)K = 35 + 15 = 50*	M1							
	D(HJ)F + E(FJ)K = 24 + 40 = 64	A1 (2 correct)							
3. (a)	D(HJ)K + EF = 33 + 25 = 58	A1 (3 correct)							
	Arcs DA, AE, FJ, JK will be traversed twice	A1							
	(b) Route length = $451 + 50 = 501$ (km) (b) Vertex I would appear 3 times in the shortest inspection route								
(b)	Vertex J would appear 3 times in the shortest inspection route	B1 (1)							
	We only have to repeat one pair of odd vertices which does not include vertex K (DE = 35, DF = 24, EF = 25)								
	DF is the smallest of the three so repeat DF (DH, HJ, JF) and therefore the other hut should be built at E	A1							
(C)	Route e.g. EADEHDHJFBEFCGFJHLGKJLMK	A1							
	The length of the route is 475 (km)	A1ft (4)							
		10 marks							
	Notes for Question 3								
a1M1: Thr	ee distinct pairings of the correct four odd nodes.								
a1A1: Any	two rows correct including pairings and totals.								
a2A1: All t	three rows correct including pairings and totals.								
a3A1: CAO	O correct arcs clearly (not just in their working) stated: DA, AE, FJ, JK. Accept	DAE, FJK or							
DE via A, I	FK via J. Do not accept DE, FK.								
a4A1ft: Th	e correct answer of 501 or 451 + their smallest repeat out of a choice of at least	two totals seen.							
b1B1: CAO	D (3)								
c1M1: Ider repeats – th sufficient f	ntifies the need to repeat one pairing not including K (maybe implicit) or listing his mark is dependent on scoring the M mark in (a). Stating any pairing that doe for this mark.	of possible s not include K is							
c1A1: Iden	tifies DF as the least of those pairings not including K and E as the position	of the other hut.							
They have	to explicitly state that DF is the least pairing that does not include K or they can	n list all three							
pairings (D	E, DF, EF) and then say DF is the smallest as this implicitly implies that they a	re considering							
only pairin	gs that do not include K.								
c2A1: Any	correct route (checks: starts at E and finishes at K (or vice-versa), 24 vertices (D, G, L appear							
twice and H	E, F, H, J appear three times and every other letter appears at least once).	TZ (1)							
c3A1ft: Co	prect answer of $4/5$ or 451 + their DF (i.e. the least pairing that does not include	e K - so their							
smallest of	DE, DF or EF).								

Question	Scheme	Marks
4. (a) (b)	A F J N N R C A T F V J V J V K N C T F V J V J K N C T F V J K N C T F V J C T V J C T F V J C T V J V J C C T V J C C T V J C C T V J C C C T V J C C C C T V J C C C C C C C C C C C C C	B1 B1 (2)
(c)	Alternating path either $N - V = F - T = A - C = J - D$ or $P - V = F - T = A - C = J - D$ Change status $N = V - F = T - A = C - J = D$ or $P = V - F = T - A = C - J = D$ Improved matching $A = C, F = T, J = D, N = V, (P unmatched), R = G$ or $A = C, F = T, J = D, (N unmatched), P = V, R = G$	M1 A1 A1 (3)
(d)	e.g. both K and G can only be allocated to R e.g. N and P can only be allocated to V	B1 (1)
	Alternating path $P - D = J - C = A - T = F - G = R - K$ or $N - V = P - D = J - C = A - T = F - G = R - K$	M1
(e)	Change status $P = D - J = C - A = T - F = G - R = K$ or $N = V - P = D - J = C - A = T - F = G - R = K$	A1
	Complete matching $A = T, F = G, J = C, N = V, P = D, R = K$	A1 (3)
		9 marks

Notes for Question 4								
a1B1: CAO – condone the addition of an arc from F to G and/or one from P to D only.								
b1B1: CAO – these four arcs and no additional ones.								
c1M1: An alternating path (e.g. letter 1^{st} set – letter 2^{nd} set – letter 1^{st} set –) from either N or P to D – or vice versa.								
c1A1: CAO – a correct path including change status either stated (only accept 'change (of) status' or 'c.s.') or shown (all symbols e.g. (=) interchanged (==). Chosen path clear.								
e.g.								
• $N - V = F - T = A - C = J - D$ N = V - F = T - A = C - J = D Scores M1A1 (change status shown)								
• change status $N - V = F - T = A - C = J - D$ Scores M1A1 (change status stated)								
• c.s. $N - V = F - T = A - C = J - D$ Scores M1A1 (change status stated)								
 N - V = F - T = A - C = J - D c.s. N = V - F = T - A = C - J = D Scores M1A1 (change status stated and shown) 								
 N - V = F - T = A - C = J - D N = V, F = T, A = C, J = D, Scores M1A0 (no change status stated or shown) 								
c2A1: CAO must follow from the correct stated path. Accept on a clear diagram (with five arcs only). Condone lack of P or N being stated as unmatched.								
d1B1: CAO (completely correct statement) – do not accept a general statement (specific nodes must be referred to). Note that these need to be checked carefully e.g. V can only be allocated to N and P is B0.								
e1M1: A second alternating path from either N (if P used in (c)) or P (if N used in (c)) to K (or vice-versa) e1A1: CAO including change status (stated or shown), chosen path clear. e2A1: CAO must follow from two correct stated paths (so both previous M marks must have been								

awarded). Accept on a **clear** diagram (with six arcs only).

Notes for Question 5 In part (a) it is important that all values at each node are checked very carefully – the order of the working values must be correct for the corresponding A mark to be awarded e.g. at L the working values must be 70 69 68 - in that order (70 68 69 is incorrect). The values in brackets in the working values at P, A, H and L can be ignored but if a candidate does have additional values at these nodes then they must be these ones only. Penalise any other/incorrect working values with the corresponding A mark. It is also important that the order of labelling is checked carefully – some candidates start with a working value of 0 at P (rather than 1) – this is fine. Also the order of labelling must be a strictly increasing sequence – so 1, 2, 3, 3, 4, ... will be penalised once (see notes below) but 1, 2, 3, 5, 6, ... is fine. a1M1: A larger value replaced by smaller value at least once in the working values at either A or M or L or S or Y. a1A1: All values in P, B, C, A and W correct. The working values at A must be in the correct order. Condone lack of 0 in P's working value. Ignore additional working value of 30 at the end of A (may read 20 16 30 – rather than 20 16 - at A). a2A1: All values in H, M and S correct and the working values in the correct order. Penalise order of labelling only once per question (H, M and S labelled in that order and H must be labelled after P, B, C, A and W). Ignore additional working value of 33 at the end of H (may read 27 33). a3A1ft: All values in L and Y correct on the follow through and the working values in the correct order. Penalise order of labelling only once per question (L and Y labelled in that order and L labelled after all other nodes). Ignore additional working value of 81 at L - may read 70 69 81 68 - rather than 70 69 68 which is fine – however, 70 69 68 81 is incorrect and loses this mark. To follow through check that all the working values at L follow from the candidate's final values from

To follow through check that all the working values at L follow from the candidate's final values from nodes A, H, M and S in whatever order the candidate has labelled these four nodes and that the final value and order of labelling follows through correctly. Repeat for Y (which will have working values from S and L).

a1B1: CAO for the route

a2B1ft: Follow through on their final value at Y – if answer is not 89 ft their final value at Y (condone lack of units)

b1B1: CAO for the route b1M1: Their final value at M + 40 + 21 - accept a value of 102 (with no other working) for this mark. b1A1: CAO (condone lack of units) – accept, as a minimum,102 followed by 13 for both marks. If 13 with no working then award the previous M mark but withhold the final A mark

Question Number		Marks									
6. (a)	Bin Bin Bin Bin	M1 A1 A1 (3)									
(b)	e.g. 24 24 24 24 <u>25</u>	using 1 14 25 24	middle 8 25 <u>x</u> <u>x</u>	e right <i>x</i> <u>19</u> <u>19</u> <u>19</u> <u>19</u>	19 14 14 <u>17</u>	25 8 8 14	6 6 17 8	17 17 9 9	9 9 <u>6</u> <u>6</u>	pivot 19 pivots <i>x</i> 6 pivots 25 17 pivots (24) 8	M1 (quick sort) A1 (1^{st} pass/pivots for 2^{nd}) A1ft (2^{nd} and 3^{rd}
	<u>25</u> <u>25</u>	24 24	<u>x</u> <u>x</u>	<u>19</u> <u>19</u>	<u>17</u> <u>17</u>	14 14	9 9	<u>8</u> <u>8</u>	<u>6</u> <u>6</u>	pivot 9 (sort complete)	passes correct) A1cso (4)
(c)	(i) B B B	Sin 1: 2 in 2: in 3: 1'	25 24 x 19 7 14	9 86		(ii)) Bin 1 Bin 2: Bin 3	: 25 2 x 19 : 17 1	4 9 8 4 9 6		M1 A1 A1 A1 (4)
(d)	x + x + x +	19 + 9 19 + 8	p = 50 B = 50	$\Rightarrow x = \Rightarrow x = x = x = x = x = x = x = x = $	= 22 = 23						B2,1,0 (2) 13 marks

Notes for Question 6

a1M1: First four items placed correctly and at least six values put in bins (so bin 1 correct and the *x* in bin 2). If a candidate gives *x* a value in the given interval then allow this for the M mark in (a) only. a1A1: First seven items placed correctly (so bins 1 and 2 correct and 25 in bin 3) a2A1: cso – all correct

b1M1: Quick sort, pivot, p, chosen (must be choosing middle left or right – choosing first/last item as pivot is M0) and first pass gives >p, p, <p. So after the first pass the list should read (values greater than the pivot), pivot, (values less than the pivot). **If only choosing one pivot per iteration M1 only** b1A1: First pass correct, next two pivots chosen correctly for second pass. If a candidate gives *x* a value in the given interval then allow this for the M mark and first A mark only in (b).

b2A1ft: Second and third passes correct (follow through from their first pass and choice of pivots) – need not be choosing pivot(s) for the fourth pass for this mark.

b3A1: CSO (correct solution only- all previous marks in this part **must** have been awarded) including choice of pivots for the fifth pass and 'sort complete' – this could be shown **either** by a 'stop' statement **or** final list being re-written **or** using each item as a pivot.

c1M1: **Must be using 'sorted' list** in decreasing order. First four items placed correctly and at least six values put in bins (so bin 1 correct and the x and 19 in bin 2). If a candidate has given x a value in (c) then M0.

c1A1: First six values correct (bin 1 corerct, the *x* and 19 in bin 2, the 17 and 14 in bin 3)

c2A1: One allocation correct

c3A1: Both allocations correct - both allocations must be clear.

d1B1: A correct value of *x* stated (working not necessary) – dependent on one correct allocation in (c).

d2B1: Both values correctly calculated (with relevant working) – dependent on both allocations correct seen in (c). If more than two values for x stated (e.g. all possible integer values) then no marks in (d).

SC for (c): if 'sorted' list has one error from (b) (e.g. a missing number, an extra number or one number incorrectly placed) then M1A1 can be awarded in (c) (for four items (M1) and six items (A1) correctly placed - see above). However no marks in (d). If there is more than one error then M0.

Part (b) Using middle left as pivot

24	14	8	x	19	25	6	17	9	pivot 19	
24	x	25	<u>19</u>	14	8	6	17	9	pivots x 6	M1 A1
24	25	<u>x</u>	<u>19</u>	14	8	17	9	<u>6</u>	pivots 24 8	
25	<u>24</u>	<u>x</u>	<u>19</u>	14	17	<u>8</u>	9	<u>6</u>	pivots (25) 14 (9)	A1
25	<u>24</u>	<u>x</u>	<u>19</u>	17	<u>14</u>	9	<u>8</u>	<u>6</u>	sort complete	Alcso

Misreads

If they have used the correct numbers at any point in part (a) and then use incorrect numbers in part (b) (say 71 instead of 17) from the beginning of the sort or misread their own numbers during part (b) then count it as an error in part (b) (so they will lose at least the final A mark but should be able to gain at least the M mark and ft A mark) – then mark part (c) according to the SC above.

Sorting list into ascending order in (b) • If the candidate sorts the list into ascending order and reverse the list in part (b) then they can score full marks in (b). If the list is not reversed in part (b) then mark as a misread (so remove the last two A marks if ٠ earned in (b)). If the list is reversed at the start of (c) but not in (b) then still treat this as a misread. If the list is still in ascending order in part (c) award no marks for first fit increasing. If the candidate says that the list needs reversing in part (b) but doesn't actually show the reversed list in (b) then remove the final A mark in (b). Ascending (middle left) Ascending (middle right) x 19 25 6 17 24 14 8 9 M1 24 14 8 x 19 25 6 17 9

14	8	6	17	9	<u>19</u>	24	x	25	A1	14	8	6	17	9	<u>19</u>	24	x	25
<u>6</u>	14	8	17	9	<u>19</u>	<u>x</u>	24	25		<u>6</u>	14	8	17	9	<u>19</u>	<u>x</u>	24	25
<u>6</u>	<u>8</u>	14	17	9	<u>19</u>	<u>x</u>	<u>24</u>	25	A1	<u>6</u>	14	8	9	17	<u>19</u>	<u>x</u>	24	25
<u>6</u>	<u>8</u>	14	9	17	<u>19</u>	<u>x</u>	<u>24</u>	25		<u>6</u>	<u>8</u>	14	9	17	<u>19</u>	<u>x</u>	24	25
<u>6</u>	<u>8</u>	9	<u>14</u>	<u>17</u>	<u>19</u>	<u>x</u>	<u>24</u>	25	A1cso	<u>6</u>	<u>8</u>	<u>9</u>	14	<u>17</u>	<u>19</u>	<u>x</u>	24	<u>25</u>

Question Number	Scheme	Marks	
7. (a)	The total float $F(i, j)$ of activity (i, j) is defined to be $F(i, j) = l_j - e_i - duration (i, j)$, where e_i is the earliest time for event <i>i</i> and l_j is the latest time for event <i>j</i> (see note below)	B2,1,0	(2)
(b)	E (6) F (2) $F (2)$	M1 A1 A1	(3)
(c)	Critical activities: A C J M	B1	(1)
(d)	G can be delayed by $21 - 11 - 3 = 7$ (days)	M1 A1	(2)
(e)	$\frac{69}{30} = 2.3$ so lower bound is 3 workers	M1 A1	(2)
(f) e.g.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 A1 A1 A1 14 marks	(4)

Notes for Question 7

a1B1: For the first mark: the idea that total float is 'how long an activity can be delayed for'. Give bod. a2B1: For both marks: A clear correct statement e.g. the **total** amount of time that an activity may be delayed from its **early** start without delaying the project **finish** time. The candidate must clearly demonstrate a knowledge that total float = latest finish – earliest start – duration of activity. Ignore comments that infer that total refers to the sum of the floats for all activities in an activity network. Note that B1B0 should be awarded for an answer that has the pertinent idea of 'float' (see a1B1 above) and B1B1 for a clear correct statement (see a2B1 above) – B0B1 cannot be awarded in this part.

b1M1: All top boxes and all bottom boxes completed. Values generally increasing from left to right (for top boxes) and values generally decreasing from right to left (for bottom boxes). Condone missing 0 or 30 for M only (for bottom boxes). Condone one rogue value in top boxes **and** one rouge value in bottom boxes (if values do not increase from left to right (or decrease right to left) then if **one** value is ignored and then the values do increase from left to right (or decrease right to left) then this is considered to be one rogue value). b1A1: CAO for top boxes.

b2A1: CAO for bottom boxes.

c1B1: CAO

d1M1: Correct calculation for their activity G seen - all three numbers correct (ft). Final value must be non-negative.

d1A1: CAO (no follow through on this A mark). Answer of 7 with no working scores no marks in this part.

e1M1: Attempt to find lower bound [59 – 79 / their finish time]

e1A1: CAO – correct calculation seen then 3. [As 30/13 also gives 3, an answer of 3 with no working scores M0A0.]

f1M1: Not a cascade chart. 4 'workers' used at most and at least 8 activities placed.

f1A1: The critical (A, C, J, M) activities and B and D correct A – 4, C – 7, J – 10, M – 9, B – 5, D – 9. B must be completed by its late finish time (11) and D must start after A and finishing before its late finish time (15).

Now check the last 7 activities - the last two marks are for E, F, G, H, I, K and L only

First check that there are only three workers and that all 13 activities are present (just once).

Then check precedences (see table below) – each row of the table could give rise to 1 error only in precedences

Finally check the length of each activity and the time interval in which the activity must take place (interval is inclusive).

Activity	Duration	Time interval	IPA
Е	6	4 – 17	А
F	2	13 – 17	D
G	3	11 – 21	B, C
Н	3	13 – 21	D
Ι	4	15 – 21	E, F
Κ	5	14 - 30	G
L	2	14 - 30	G

f2A1: 3 workers. All 13 activities present (just once). Condone one error either precedence, time interval or activity length, on activities E, F, G, H, I, K and L only.

f3A1: 3 workers. All 13 activities present (just once). No errors on activities E, F, G, H, I, K and L.

Question Number	Scheme	Mark	S
8. (a)	$y \le 2x$, $5y \ge 2x$, $2x + y \le 36$, $4x + y \ge 36$	B2,1,0	(2)
	B(6,12), C(9,18), D(15,6)	B1	
	$A\left(\frac{90}{11},\frac{36}{11}\right),$	B1	
	at A: $F = \frac{90}{11} + \frac{36}{11}k$, at B: $F = 6 + 12k$, at C: $F = 9 + 18k$, at D: $F = 15 + 6k$	B1	
(b)	$\frac{90}{11} + \frac{36}{11}k < 6 + 12k \text{ and } 9 + 18k < 15 + 6k$	M1	
	$k > \frac{1}{4}$ and $k < \frac{1}{2}$	A1	
	$\left \frac{1}{4} < k < \frac{1}{2} \right $	A1	(6)
	T 4		

8 marks

Notes for Question 8

a1B1: Any two correct inequalities (condone strict inequalities).

a2B1: CAO (equalities cannot be strict for this mark).

As there are a number of different methods that the candidates can adopt – consider the candidate's full response and mark each attempt according to the notes below – award the candidate the marks for their best response/attempt. However, do not mix the approaches together e.g. if they find the exact coordinates of all four vertices and then state that the maximum gradient of P is -2 then this would score the first two marks only (method 1).

Method 1 (point testing)

b1B1: The coordinates of B, C and D stated exactly.

b2B1: The coordinates of A stated exactly.

b3B1: The objective function calculated in terms of k at either A or B or C or D.

b1M1: Either (their objective function at A) < (their objective function at B) or (their objective function at C) < (their objective function at D) (condone equals sign or any inequality).

b1A1: Either $k > \frac{1}{4}$ or $k < \frac{1}{2}$ or $k \ge \frac{1}{4}$ or $k \le \frac{1}{2}$. b2A1: CAO $\frac{1}{4} < k < \frac{1}{2}$ or $\frac{1}{4} \le k \le \frac{1}{2}$ (or as separate inequalities)

Method 2 (objective line method I)

Comparing the gradient of the objective function to the gradient of the two lines with negative gradient. b1B1: The **minimum** gradient (of P) stated as -4 - must see explicit mention of minimum.

b2B1: The **maximum** gradient (of P) stated as -2 - must see explicit mention of maximum.

b3B1: Gradient of objective function stated as $-\frac{1}{k}$.

b1M1: Comparing gradient of objective function to either -2 or -4.

Final two marks as in method 1.

Method 3 (objective line method II)

b1B1: **Minimum** P parallel to $4x + y = \cdots$ (limiting case) – **must** see explicit mention of minimum. b2B1: **Maximum** P parallel to $2x + y = \cdots$ (limiting case) – **must** see explicit mention of maximum.

b3B1: Re-arranging equations (either seen or implied) to give $x + \frac{y}{4} = \cdots, x + \frac{y}{2} = \cdots$

b1M1: Compare coefficients of *y* in the objective function & lines.

Final two marks as in method 1.

SC: If no working seen (max 3/6 marks)

 $k = \frac{1}{2}$ or $k = \frac{1}{4}$ (where \blacksquare is any inequality or equals) award first B mark. $k > \frac{1}{4}$ or $k < \frac{1}{2}$ or $k \ge \frac{1}{4}$ or $k \le \frac{1}{2}$ award the first two B marks. $\frac{1}{4} < k < \frac{1}{2}$ or $\frac{1}{4} \le k \le \frac{1}{2}$ award the first three B marks.

PMT

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

January 2015

Pearson Edexcel International A Level in Decision Mathematics 1 (WDM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015 Publications Code IA040490 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Number	Scheme	Marks	8
2. (a)	e.g. B can only do task 2 and F can only do task 6 therefore E will have no allocation as E can only do tasks 2 and 6 e.g. D has to do task 4 as task 4 can only be done by D therefore task 5 has to be done by A as task 5 can only be done by A and D which leaves task 3 with no worker as only A can do task 3	B1	(1)
(b)	C - 1 = A - 3 C - 1 = A - 5 = D - 4	B1 B1	(2)
(c)	A = 3, B = 2, C = 1, D = 5, E = 6 (F unmatched) A = 5, B = 2, C = 1, D = 4, E = 6 (F unmatched)	B1 B1	(2)
(d)	Alternating path $F-6 = E-2 = B-5 = D-4$ or $F-6 = E-2 = B-5 = A-3$	M1	
	Change status $F = 6 - E = 2 - B = 5 - D = 4$ or $F = 6 - E = 2 - B = 5 - A = 3$	A1	
	Complete matching $A = 3, B = 5, C = 1, D = 4, E = 2, F = 6$	A1 8 marks	(3)
	Notes for Question 2		
b2B1: CA c1B1: CA c2B1: CA d1M1: Ar d1A1: CA or shown d2A1: CA	O (C - 1 = A - 5 = D - 4). O (A = 3, B = 2, C = 1, D = 5, E = 6). O (A = 5, B = 2, C = 1, D = 4, E = 6). alternating path from F to either 3 or 4 (or vice-versa). O - a correct path including change status either stated (only accept 'change (of) Chosen path clear. O must follow from the correct stated path. Accept on a clear diagram (with six a	status' or 'c	c.s.')

Question Number	Scheme	Marks						
Tumber	Bin 1: 1.1 0.7 0.9 0.2							
	Bin 2: 1.9 0.4 0.5							
3. (a)	Bin 3: <u>2.1</u>	M1 <u>A1</u> A1 (3)						
	Bin 4: <u>2.3</u>							
	Bin 5: 1.7							
(b) (i)	1.1 1.9 0.9 2.1 0.7 2.3 0.4 0.5 1.7 0.2	M1 A1						
(ii)	Comparisons: 9 Swaps: 7	B1 B1 (4)						
(c)	e.g. using middle right 1.9 1.1 2.1 0.9 2.3 0.7 0.5 1.7 0.4 0.2 pivot 0.7 1.9 1.1 2.1 0.9 2.3 1.7 0.7 0.5 0.4 0.2 pivot 0.7 1.9 1.1 2.1 0.9 2.3 1.7 0.7 0.5 0.4 0.2 pivots 0.9 0.4 1.9 1.1 2.1 2.3 1.7 0.9 0.7 0.5 0.4 0.2 pivots 0.9 0.4 1.9 1.1 2.1 0.9 0.7 0.5 0.4 0.2 pivot(s) 2.1 (0.5) (0.2) 2.3 2.1 1.9 1.1 1.7 0.9 0.7 0.5 0.4 0.2 pivot(s) (2.3) 1.1 2.3 2.1 1.9 1.7 1.1 0.9 0.7 0.5 0.4 0.2 pivot(s) (2.3) 1.1 2.3 2.1 1.9 1.7 1.1 0.9 0.7 0.5 0.4 0.2 (sort complete)	M1 A1 A1ft A1 (4)						
	Bin 1: 2 3 0 7							
	Bin 2: 2.1 0.9							
(d)	Bin 3: 1.9 1.1	M1 <u>A1</u> A1 (3)						
	Bin 4: 1.7 0.5 0.4 0.2							
		14 marks						
	Notes for Question 3							
a1M1: Fir	st four numbers placed correctly and at least six numbers put in bins. Condone cur	nulative totals						
here only.								
alA1: Firs	st seven numbers placed correctly.							
a2A1: CS	U – all correct.							
b11M1: Bi	Loble sort, end number in place correctly.							
SC IOF MI	1 only: $0.7 \ 1.1 \ 0.9 \ 1.9 \ 0.2 \ 2.1 \ 0.4 \ 0.5 \ 1.7 \ 2.3 \ (ascending from field-hand end)$	·. 4)						
0.2 1.1 0.7 1.9 0.9 2.1 0.4 2.3 0.5 1.7 (ascending from right-hand end).								
bi1A1: CA	$\Delta Q = $ isw after one complete pass	id).						
bii1B1: C	omparisons correct (9).							
bii2B1: Sy	waps correct (7).							
c1M1: Qu	ick sort – pivots, p, selected and first pass gives >p, p, <p. 1="" choosing="" if="" only="" pivot<="" td=""><td>ot per iteration</td></p.>	ot per iteration						
M1 only. Using bubble sort in this part is M0.								
c1A1: First pass correct and next pivots chosen correctly/consistently for second pass.								
c2A1ft: Second and third passes correct (follow through from their first pass and choice of pivots) – next								
pivot(s) chosen correctly/consistently for fourth pass.								
c3A1: CSO – including choice of pivot for the fifth pass and then either a 'stop' statement								
or final re-listing or using each item as a pivot. d1M1: Must be using 'sorted' list in decreasing order (independent of (a)). First five numbers released								
correctly and at least six numbers put in bins. First-fit increasing is M0								
d1A1: First seven numbers placed correctly.								
d2A1: CSO – all correct.								

Que Nur	stion nber	on Scheme					Marks				
Number Interview SC for (d): If the 'sorted' list used in (d) has one 'error' from (c) (e.g. a missing number, an extra number or one number incorrectly placed) then M1 only can be awarded in (d) (for the first five numbers placed correctly). If there is more than one 'error' then M0. Allow full marks in (d) if a correct list is used in (d) even if the list is incorrect at the end of (c). Sorting list into ascending order in (c) • If the candidate sorts the list into ascending order and reverses the list in (c) then they can score full marks in (c). • If the list is not reversed in (c) then mark as a misread (so remove the last two A marks earned in (c)). If the list is reversed at the start of (d) but not in (c) then still treat this as a misread. If the candidate says that the list needs reversing in (c) but doesn't actually show the reversed list in (c)											
Mid	dle lei	ft									
1.9 2.3 2.3 2.3	1.1 1.9 1.9	2.1 1.1 1.1	0.9 2.1 2.1	2.3 0.9 0.9	0.7 0.7 1.7	$0.5 \\ 0.5 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.7 \\ 0.5 \\ 0.7 \\ 0.5 \\ 0.7 $	1.7 1.7 0.5	0.4 0.4 0.4	0.2 0.2 0.2	Pivot 2.3 Pivot 0.7 Pivot 2.1 0.4	M1 A1
$\frac{2.3}{2.3}$ 2.3	$\frac{2.1}{2.1}$ $\frac{2.1}{2.1}$	1.9 1.9 1.9	1.1 1.7 1.7	0.9 <u>1.1</u> <u>1.1</u>	1.7 0.9 0.9	<u>0.7</u> <u>0.7</u> <u>0.7</u>	0.5 0.5 0.5	$\frac{0.4}{0.4}$ $\frac{0.4}{0.4}$	0.2 0.2 0.2	Pivot 1.1 (0.5) (0.2) Pivot 1.9 (0.9) (sort complete)	Alft Al
Asc	Ascending order (middle right)										
1.9 0.5 0.2 0.2 0.2 0.2 0.2	$ \begin{array}{r} 1.1 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ \end{array} $	2.1 0.2 0.5 0.5 0.5 0.5	$\begin{array}{c} 0.9 \\ \underline{0.7} \end{array}$	$2.3 \\ 1.9 \\ \underline{0.9} $	0.7 1.1 1.9 1.9 <u>1.1</u> <u>1.1</u>	$0.5 \\ 2.1 \\ 1.1 \\ 1.1 \\ 1.9 \\ 1.7 \\ 1.7 \\ 0.5 $	1.7 0.9 2.1 1.7 1.7 1.9	$0.4 \\ 2.3 \\ 2.3 \\ \underline{2.1} \\ \underline{2.1} \\ \underline{2.1} \\ \underline{2.1}$	0.2 1.7 1.7 2.3 2.3 2.3	Pivot 0.7 Pivot 0.4 0.9 Pivot (0.2) (0.5) 2.1 Pivot 1.1 (2.3) Pivot 1.7 sort complete	M1 A1 A1ft A1
Ascending order (middle left)											
1.9 1.9 0.5 0.2 0.2 0.2	$ \begin{array}{c} 1.1 \\ 1.1 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ \end{array} $	2.1 2.1 0.2 0.5 0.5 0.5	0.9 0.9 <u>0.7</u> <u>0.7</u> <u>0.7</u> <u>0.7</u>	2.3 0.7 1.9 1.9 0.9 0.9	$0.7 \\ 0.5 \\ 1.1 $	0.5 1.7 2.1 0.9 1.9 1.7	1.7 0.4 0.9 1.7 1.7 <u>1.9</u>	$0.4 \\ 0.2 \\ 1.7 \\ \underline{2.1} \\ \underline{2.1} \\ \underline{2.1} \\ \underline{2.1}$	0.2 <u>2.3</u> <u>2.3</u> <u>2.3</u> <u>2.3</u> <u>2.3</u> <u>2.3</u>	Pivot 2.3 Pivot 0.7 Pivot 0.4 2.1 Pivot (0.2) (0.5) 1.1 Pivot (0.9) 1.9 sort complete	M1 A1 A1ft A1

Question Number	Scheme	Marks			
c1B1: Any correct route (checks: 20 nodes, starting and finishing at A, pairings AB, BC, CF, EJ appear					

twice in the route and that A, C and F appear three times, B, D, E, H and J appear twice and G appears once).

c2B1ft: Correct answer of 118 or 100 + their least out of a choice of at least **two** totals given in (b). d1M1: Any consideration/mention of all the odd nodes (C, E, F and J) or consideration/mention of all the odd pairings (CE, CF, CJ, EF, EJ, FJ) or consideration/mention of arcs EF and CF (and no others) having least weight or EF and CF (and no others) having a weight of 4 or listing one correct starting and finishing point (must be clear).

d1A1: Both combinations of starting and finishing points correct (E and J + C and J) and no others. d1B1: CAO (97)

Number	Scheme	Mark	S
5. (a)	$\begin{array}{c} C \\ A \\ B \\ B \\ E \\ I \\ \end{array}$	M1 A1 A1 A1 A1	(5)
(b)	Dummies are needed to show either – dependency where subsequent activities do not all depend on the same preceding activities – that an activity can be uniquely represented in terms of its end events	B1 B1 7 marks	(2)

In (a) condone lack of, or incorrect, numbered events throughout – also 'dealt with correctly' means that the activity starts from the correct event but may not finish at the correct event. **Activity on node is MO**.

Do not penalise the same error twice with the first three A marks, for example, if activity C is not labelled (but the arc is present) then this will lose the first A mark and the final (CSO) A mark – they can still earn the second A mark on the bod.

a1M1: Eight activities (labelled on arc), one start and at least one dummy placed.

a1A1: Activities A, B, 1st dummy (+ arrow) and C, D and E dealt with correctly.

a2A1: 2nd dummy (+ arrow) and F, G and K dealt with correctly.

a3A1: Activities H, I, 3rd dummy (+ arrow) and J dealt with correctly.

a4A1: CSO – **all** arrows present **and** correctly placed with one finish.

Penalise lack of, or incorrect, arrows on the dummies only once with the first three A marks (on the first occurrence).

b1B1: Dependency + some explanation of what this means, bod – allow a correct example using any nodes/letters.

b2B1: Uniqueness – please note that, for example, 'so that activities can be defined uniquely' is not sufficient to earn this mark. There must be some mention of describing activities either in terms of the event **at each end** or in terms of an activities **events**. However, give bod on statements that imply that an activity begins and ends at the same event.

Question	Scheme	Marks					
Number	Scheme	IVIAIKS					
d1M1: Dra	d1M1: Drawing the correct objective line or its reciprocal $\left(m = -3 \text{ or } -\frac{1}{3}\right)$. Line must be correct to within						
one small	square if extended from axis to axis.						
d1A1: Correct objective line $\left(m = -\frac{1}{3}\right)$ – condone lack of labelling of the objective line.							
d2A1: Correct point identified – accept as a coordinate (34, 3). e1B1ft: A 'correct' equation involving their optimal point from (d) (accept any values even if non-integer) and 107 50							
e2B1: CAO on the relationship between the costs of green hats and red hats $(g = 3r)$ – this mark may be implied e.g. $34r + 3(3r) = 107.5$ would score the first two marks in this part.							
e3DB1: CAO – this mark is dependent on having the correct optimal point (34, 3) in (d).							
Question Number	Scheme	Mark	s				
---	--	--------------------------	-----	--	--		
7. (a)	x = 12	B1					
(b)	$y = 3$ $\begin{array}{c} 9 \\ C(7) \\ 24 \\ 26 \\ K(10) \\ 37 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37 \\ 3$	M1 A1 A1	(3)				
(c)	Lower bound = $\frac{99}{37}$ = 2.675 so 3 workers	B1	(1)				
(d)	0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 B F H M A C D G I J K L	M1 A1 A1 A1	(4)				
(e)	Lower bound is 5 workers – e.g. activities H, I, J, K and L together with 27 < time < 28	M1 A1 12 marks	(2)				
	Notes for Question 7						
a1B1: Correct value (12) for <i>x</i> . a2B1: Correct value (3) for <i>y</i> .							
 b1M1: All (but one) boxes complete and any three values correct. b1A1: Any five values correct. b2A1: CAO (all seven values correct). c1B1: CSO – no incorrect working – if 3 workers with no working then give on the bod. d1M1: At least nine activities including at least five floats. Scheduling diagram scores M0. d1A1: The correct critical activities (B, F, H and M) dealt with correctly. d2A1: All correct non-critical activities present with floats with five non-critical activities correct. 							

Question Number	Scheme	Marks			
e1M1: A statement with the correct number of workers (5) and the correct activities (H, I, J, K and L) with					
some mention of time.					
e1A1: A completely correct statement with details of both time and activities. Candidates only need to give					
a time within the correct interval. Please note the strict inequalities for the time interval. Allow for example					

'on day 28' as equivalent to 27 < time < 28.

Mark Scheme (Results)

Summer 2015

Pearson Edexcel International A Level in Decision Mathematics 1 (WDM01/01)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2015 Publications Code IA041219 All the material in this publication is copyright © Pearson Education Ltd 2015 PhysicsAndMathsTutor.com

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

a1M1: A larger value replaced by a smaller value at least once in the working values at either C or E or F or G or H

a1A1: All values in S, A, B, D and C correct. The working values at C must be in the correct order. Condone lack of 0 in S's working value

a2A1: All values in F and E correct and the working values in the correct order. Penalise order of labelling only once per question (F and E must be labelled in that order and F must be labelled after S, A, B, D and C)

a3A1ft: All values in H and G correct on the follow through and the working values in the correct order. Penalise order of labelling only once per question (H and G must be labelled in that order and H labelled after all other nodes (excluding G))

a4A1ft: If their answer is not 23 follow through their final value at G (condone lack of units) a5A1: CAO for the route (S - A - C - F - G)

b1B1ft: If their answer is not 20 follow through their final value at H (condone lack of units) b2B1: CAO for the route (S - A - C - F - E - H)

Question	Scheme							Mark	s			
Number					50	liellie					Mark	5
2.(a)	In the first these value We then co if the third end of the l	In the first pass we compare the first value with the second value and we swap these values if the second is larger than the first We then compare the value which is now second with the third value and swap if the third is larger than the second. We continue in this way until we reach the end of the list							M1 A1	(2)		
(b)(i)	The smalle	st valı	ie will	be in th	ne correc	et final p	osition	after the	first pas	s	B1	
(ii)	Maximum	numb	er of p	asses is	n-1						B1	(2)
(c)	1 st pass: 2 nd pass: 3 rd pass: 4 th pass: 5 th pass: 6 th pass:	11 11 13 13 13 13	9 9 13 11 11 11 12	4 13 9 9 9 9 12 11	13 5 7 12 9 9 9 Sort c	5 4 7 12 8 8 8 8 8 8 8	1 7 12 8 7 7 7 7	7 12 8 5 5 5 5 5 5	12 8 4 4 4 4 4 4	8 1 1 1 1 1 1 1	M1 A1 A1ft A1(cso)	(4)
(d)	Bin 1: <u>13</u> Bin 2: <u>12</u> Bin 3: <u>11</u> Bin 4: 5	$\frac{8}{9}$ 7 1 4									<u>M1</u> A1 (10 mar ł	(2) (3)
				-	Notes	for Que	stion 2					~
alM1: Co	a1M1: Comparing first value with second value, swap if second is larger (oe) – must be clear that the first											

a1M1: Comparing **first** value with **second** value, **swap** if **second** is **larger** (oe) – must be clear that the first value in the list is being compared with the second value in the list and swapping if the second is larger than the first

a1A1: Compare **second** with **third**, (third with fourth), **and so on** until the **end** of the list – must be clear that after the first comparison the second value in the list is compared with the third value and so on until the end of the list

bi1B1: CAO (on smallest value oe) – allow 1 (this is the smallest value from the list in (c)) bii2B1: CAO

c1M1: Bubble sort. Consistent direction, end number (1) in place. Do check these carefully as some candidates show the result of each comparison and swap in the first pass. Consider the placement of the candidate's numbers, rather than what the candidate labels each line of their pass. For example, assume that the first time that the 1 appears at the end of the list is the end of their first pass

c1A1: First and second passes correct – so end two numbers in place

c2A1ft: Third and fourth passes correct following through from the candidate's second pass c3A1: CSO – including either a 'sort complete' statement **or** final list rewritten/seventh pass

d1M1: Bins 1 and 2 correct and 11 in Bin 3 (so first 5 values correctly placed) – no follow through on an incorrect list from (c) d1A1: CSO

Question Number		Scheme	Marks
a			

Sorting list into ascending order in (c)

- If the candidate sorts the list into ascending order and reverses the list then they can score full marks
- If the list is not reversed then mark as a misread. If the candidate says that the list needs reversing but doesn't actually show the reversed list then remove the final A mark earned

Misreads - if there is a 'misread' of a single number (this could take the form of an extra number, a number missing, or a number changed, for example, 31 rather than 13) before starting the sort in (c) then mark as a misread. If they 'misread' more than one number then M0. If they miscopy one of their own numbers during the sort then this is an accuracy error and loses the corresponding A mark(s)

Question Number	Scheme	Mark	8	
3. (a)	e.g. $P - Q - S - P$	B1	(1)	
(b)	As vertex Q appears more than once $P - Q - R - T - Q - S$ is not an example of a path on G	B1 DB1	(2)	
(c)	PS, ST, SV; QS, QR; RU, TW	M1; A1; A	A1 (3)	
(d)	ST SV PS QS (not QT) QR (not PQ) (not TV) RU TW	M1 A1 A	1 (3)	
(e)		B1	(1)	
(f)	20 < x < 31	B2,1,0	(2)	
		(12 mark	(s)	
Notes for Question 3				

a1B1: Any closed path on G (**must** begin **and** end with the same vertex) – check that no vertex (except the start and end vertex) appears more than once

b1B1: No + attempt at a reason – **any** mention of cycle/circle/loop etc. **or repeated** vertex/node/point etc. is sufficient for this mark (condone incorrect technical language) – give bod

b2DB1: No + correct reason – no bod – must refer to vertex Q appearing twice (in the walk – **not** just that a vertex is repeated) or that it contains the cycle Q - R - T - Q (**not** just that it contains a cycle). All technical language must be correct for this mark

c1M1: Prim's – First three arcs correctly chosen in order (PS, ST, SV, ... or weights 13, 9, 11, ...) or first four nodes {P, S, T, V, ...} correctly chosen in order. If any rejections seen at some point then M1 (max) only. Order of nodes may be seen at the top of a matrix/table $\{1, -, -, 2, 3, -, 4, -\}$

c1A1: First five arcs correctly chosen in order (PS, ST, SV, QS, QR, ... or weights 13, 9, 11, 14, 16, ...) or all eight nodes {P, S, T, V, Q, R, U, W} correctly chosen in order. Order of nodes may be seen at the top of a matrix so for the first two marks accept {1, 5, 6, 2, 3, 7, 4, 8} (no missing numbers)

c2A1: CSO – all **arcs** correctly **stated** and chosen in the correct order. They must be considering arcs for this final mark (do not accept a list of the weights of each arc, nodes or numbers across the top of the matrix unless the correct list of arcs (in the correct order) is also seen)

Misread: Starting at a node other than P scores M1 only – must have the first three arcs (or four nodes or numbers) correct (and in the correct order) – condone rejections seen for this mark

Question	Scheme	Marka
Number	Scheme	IVIALKS

d1M1: Kruskal's – first four arcs (ST, SV, PS, QS,... or weights 9, 11, 13, 14,...) chosen correctly in order and **at least one rejection seen at some point**

d1A1: All seven arcs (ST, SV, PS, QS, QR, RU, TW or weights 9, 11, 13, 14, 16, 20, 24) chosen correctly in order and no additional arcs

d2A1: CSO – all selections and rejections correct (in correct order and at the correct time) – do not accept weights only for this mark

- Listing all the arcs in order and then listing those arcs in the tree in the correct order is fine for **full marks** (this implies that rejections are correct and at the correct time)
- Listing all the arcs in order and just drawing the MST is **M0**

e1B1: CAO (condone lack of/incorrect weights on arcs)

f1B1: x < 31 or $x \le 31$ or x < 30 or $x \le 30$ f2B1: Either 20 < x < 31 or $21 \le x \le 30$

Question Number	Scheme	Marks	5	
4. (a)	A path from an unmatched vertex in one set to an unmatched vertex in the other set	B1		
	which alternately uses arcs not in/in the matching	B1	(2)	
(b)	Initial matching: $A = 3$, $B = 2$, $D = 4$ (C and E unmatched)	B1		
	Improved matching: $A = 4$, $B = 3$, $D = 1$, $E = 2$ (C unmatched)	B1	(2)	
(c)	e.g. (see below for alternatives)			
	Alternating path: $C - 3 = B - 2 = E - 5$	M1		
	Change status to give: $C = 3 - B = 2 - E = 5$	A1		
	Complete matching: $A = 4$, $B = 2$, $C = 3$, $D = 1$, $E = 5$	A1	(3)	
		(7 marks))	

Notes for Question 4

Possible paths	Α	В	С	D	E
C - 3 - B - 2 - E - 5	4	2	3	1	5
C - 4 - A - 1 - D - 5	1	3	4	5	2
C - 4 - A - 3 - B - 2 - E - 5	3	2	4	1	5

a1B1: **Unmatched** to **unmatched** (vertex/node may be implied but do not accept arc) – technical language (if used) must be correct

a2B1: (Alternate) arcs not in/in (arc(s) (not vertices/nodes) must be explicitly mentioned)

In (b) ignore the candidates labelling in this part – for example, give bod on candidates who call the initial matching the improved matching (and vice-versa) or those that state the initial matching under (ii). Condone lack of unmatched vertices stated. Both the initial and improved matching may be stated or drawn – do check carefully the top of the second page for these drawn there. Only accept a clear diagram with exactly three or four arcs

b1B1: CAO (A = 3, B = 2, D = 4) b2B1: CAO (A = 4, B = 3, D = 1, E = 2)

c1M1: An alternating path from C to 5 (or vice – versa)

c1A1: CAO – a correct path including change status **either** stated **or** shown. Chosen path clear c2A1: CAO – must follow from correct stated path. Accept on a clear diagram (with five arcs only).

Question Number	Scheme	Marks			
5.(a)	$\begin{array}{l} A(BC)E + H(F)G = 15 + 13 = 28*\\ A(BDF)H + E(F)G = 30 + 7 = 37\\ A(BDF)G + E(F)H = 21 + 16 = 37 \end{array}$	M1 A1 A1 A1			
	Repeat arcs: AB, BC, CE, HF, FG	A1			
	Length: $214 + 28 = 242$ (km)	Alft (5)		
(b)	4	B1 (1	l)		
(c)	EG (7) is the shortest link between two odd nodes excluding H Repeat EG (7) since this is the shortest path excluding H	M1			
	We finish at A	A1			
	Length of route = $214 + 7 = 221$ (km)	A1 (3	5)		
		(10 marks)			
	Notes for Question 5				

a1M1: Three distinct pairings of the correct four odd nodes

a1A1: One row correct including pairings **and** totals

a2A1: Two rows correct including pairings **and** totals

a3A1: All three rows correct including pairings and totals

a4A1: The smallest repeat arcs (accept ABCE, HFG but not AE, HG)

a5A1ft: Correct answer of 242 or 214 + their least

b1B1: CAO (4)

c1M1: Identifies the need to repeat one path of the three (AE, EG, AG) which does not include H (maybe implicit) or listing of only these possible repeats – this mark is dependent on either scoring the M mark in (a) or stating all three possible paths

c1A1: Identifies EG as the least **and** A as the finishing point. They have to explicitly state the EG is the least path (but they do not need to include that it is the least of those that do not include H as this is the least of all six possible paths)

c2A1: CAO (221)

Question Number	Scheme	Marks
	Notes for Question 6	
a1B1: Any	v four rows correct	
a2B1: All	eight rows correct	
b1M1: All condone o b1A1: CA b2M1: All ('right to 1 b2A1: CA	top boxes complete, values generally increasing in the direction of the arrows ('left ne rogue O bottom boxes complete, values generally decreasing in the opposite direction of the eft'), condone one rogue. O	t to right'), e arrows
c1B1: CA	O – correct calculation seen	

d1B1: CAO – either a **correct** calculation seen **or** awrt 3.4 **then** 4. An answer of 4 with no working scores B0

e1M1: Not a cascade chart. 5 workers used at most, at least 8 new (14 in total) activities placed e1A1: 4 workers. All 11 new (17 in total) activities present (just once). Condone **two** errors **either** precedence **or** time interval **or** activity length

e2A1: 4 workers. All 11 new (17 in total) activities present (just once). Condone **one** error **either** precedence **or** time interval **or** activity length e3A1: CAO

Activity	Duration	Time interval	IPA
D	8	5 - 21	А
Е	4	10 - 21	B, C
F	3	10 - 23	B, C
Н	14	10 - 32	С
Ι	11	14 - 32	D, E
Κ	5	15 - 35	G
L	10	24 - 42	G, H
М	10	25 - 42	Ι
Р	11	23 - 35	D, E, F, J
Q	7	34 - 42	K, P
R	5	34 - 42	K, P

Question Number	Scheme	Marks				
	Notes for Question 7					
a1M1: Tw coefficient a1A1: CA a2M1: Tw form or al a2A1: CA b1M1: Eit b1A1: CA	a1M1: Two of three coefficients correct with correct inequality sign in unsimplified form or all three coefficients correct with any sign $(=, <, >, \le, \ge)$ a1A1: CAO (the correct answer with no working can imply M1 only) a2M1: Two of the three coefficients correct with correct inequality sign in either unsimplified or simplified form or all three coefficients correct with any sign $(=, <, >, \le, \ge)$ a2A1: CAO (the correct answer with no working can imply M1A1) b1M1: Either both coefficients correct (accept =, <, >, \le , \ge here) or $y \ge 2x$ b1A1: CAO					
c1B1: 12x Ignore sha c2B1: 5x shading c3B1: 2y enough to c4B1: R la	c1B1: $12x + 7y = 168$ drawn correctly, does not pass outside of a small square of (0, 24) and (14, 0). Ignore shading c2B1: $5x + 8y = 160$ drawn correctly, does not pass outside of a small square of (0, 20) and (32, 0). Ignore shading c3B1: $2y = x$ drawn correctly, does not pass outside of a small square of (0, 0), (16, 8) and sufficiently long enough to define the feasible region. Ignore shading c4B1: R labelled correct (not just implied by shading) – must have earned all previous marks in this part					
di1B1: Dra must not p di2DB1: V that define dii1M1: T get to x=·· dii1A1: CA can imply e1B1: CA e2B1: CA	di1B1: Drawing the correct objective line on the graph, use line drawing tool to check if necessary. Line must not pass outside of a small square if extended from axis to axis di2DB1: V labelled clearly on their graph. This mark is dependent on both the correct three line segments that define the boundary of the feasible region and the correct objective line dii1M1: The simultaneous equations $5x + 8y = 160$ and $x = 2y$ being used in an attempt to find V – must get to x=… or y=… (condone one error in the solving of the simultaneous equations) dii1A1: CAO $\left(\frac{160}{9}, \frac{80}{9}\right)$ or $\left(17\frac{7}{9}, 8\frac{8}{9}\right)$ (coordinates must be exact) – the correct answer with no working can imply M1A1 e1B1: CAO $(17, 9)$ – accept $x = 17, y = 9$ e2B1: CAO $((f)1344)$					

PhysicsAndMathsTutor.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE in Decision Mathematics 1 (6689/01)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code UA041213 All the material in this publication is copyright © Pearson Education Ltd 2015 PhysicsAndMathsTutor.com

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks

affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks		
1. (a)	There are two unmatched vertices in each set (the algorithm matches only one vertex from one set to one vertex in the other set once per iteration)			
(b)	B - 4 = C - 5	M1		
	D - 2 = A - 3 = F - 6 = E - 1	A1	(2)	
(c)	A = 3, (B unmatched), $C = 4$, $D = 2$, $E = 5$, $F = 6$	B1	(1)	
(d)	Alternating path: $B - 4 = C - 5 = E - 1$			
	Change status: $B = 4 - C = 5 - E = 1$	M1		
	Complete matching: $A = 3$, $B = 4$, $C = 5$, $D = 2$, $E = 1$, $F = 6$	A1	(2)	
		6 marks		
	Notes for Question 1			

a1B1: CAO – an understanding that there are **two unmatched vertices** in **each set**. However, be generous, and see below examples that we would accept for B1

- Both B and D (or 1 and 5) are unmatched
- Two vertices in set X (or two in set Y) are unmatched
- There are four unmatched nodes (or there are more than two unmatched nodes)
- There are two pairs of nodes that are not matched (on one side of the graph)
- There are two vans (or deliveries) that are not matched to deliveries (or vans)
- There are two vertices on the left (or two on the right) that have not been matched
- Two vertices in set X and Y are unmatched (bod)

Examples for B0:

- There are two unmatched nodes
- There are two sets of unmatched nodes
- Ther are two unmatched arcs in each set

So accept poor terminology (for example, point for vertex, side for set, etc.) but not incorrect terminology (arc for vertex, etc.) and accept contextualised answers ('vans' rather than 'vertices')

b1M1: One correct alternating path (accept any symbol connecting the vertices, for example, B - 4 - C - 5, or B4C5). Note that 5 - C = 4 - B and 1 - E = 6 - F = 3 - A = 2 - D (so paths from 5 to B and 1 to D) are fine

b1A1: Both paths correct (isw if more than two paths are stated)

c1B1: CAO – condone lack of B or 1 being stated as unmatched. The improved matching may be stated **or** drawn – do check carefully the top of the second page for the improved matching drawn there. Only accept a clear diagram with exactly five arcs

d1M1: The **correct** alternating path from B to 1 (or vice-versa) **and then either** (i) **or** (ii)

- (i) the 'change status' **either** stated in words (but only accept 'change (of) status' **or** 'c.s.' not 'change state' etc.) **OR** shown (**all** symbols e.g. (...-...=...) **interchanged** (...=...=...).
- (ii) the correct complete matching either stated **or** drawn only accept a clear diagram with exactly six arcs do check carefully the top of the second page for the complete matching drawn there.

d1A1: CAO – all three parts – the correct alternating path **and** the change status either stated **or** shown **and** the complete matching either stated **or** drawn

Question Number	Scheme	Marks						
	e.g. using middle right	M1 (quick)						
	18 29 48 9 42 31 37 24 27 41 pivot 31	A1 (1 st pass/pivots						
	18 29 9 24 27 <u>31</u> 48 42 <u>37</u> 41 pivots 9, 37	for 2 nd pass)						
2. (a)	<u>9</u> 18 29 24 27 <u>31</u> <u>37</u> 48 42 41 pivots 24, 42	A1ft (2 nd /3 rd passes and						
	<u>9</u> 18 <u>24</u> 29 <u>27</u> <u>31</u> <u>37</u> 41 <u>42</u> 48 pivot(s) (18), 27, (41), (48)	pivot(s) for 4 th pass)						
	<u>9</u> 18 <u>24</u> <u>27</u> 29 <u>31</u> <u>37</u> 41 <u>42</u> 48 sort complete (pivot (29))	A1 (cso +						
		sort complete) (4)						
	e.g. left to right 72 53 89 91 68 67 90 77 83 75	M1 (bubble)						
	(end of 1^{st} pass): 53 72 89 68 67 90 77 83 75 91	A1 (1 st and 2^{nd} passes)						
(b)	(end of 2^{nd} pass): 53 72 68 67 89 77 83 75 90 91	A1ft (3 rd and						
	(end of 3^{rd} pass): 53 68 67 72 77 83 75 89 90 91	4 th passes)						
	(end of 4 th pass): 53 67 68 72 77 75 83 89 90 91	A1 (cso + sort						
	(end of 5 th pass): 53 67 68 72 75 77 83 89 90 91 sort complete	complete) (4)						
(c)	Pivot $1 = \left[\frac{1+20}{2}\right] = 11$ number 53 68 is after 53 so reject 1 - 11	M1						
	Pivot $2 = \left[\frac{12+20}{2}\right] = 16$ number 77 68 is before 77 so reject $16 - 20$							
	Pivot 3 = $\left[\frac{12+15}{2}\right]$ = 14 number 72 68 is before 72 so reject 14 – 15							
	Pivot $4 = \left\lfloor \frac{12+13}{2} \right\rfloor = 13$ number 68 – number found							
	11 marks							
Notes for Question 2								

a1M1: Quick sort, pivot, p, chosen (must be choosing middle left or right – **choosing first/last item as pivot is M0**) and first pass gives <p, p, >p. So after the first pass the list should read (values less than the pivot), pivot, (values greater than the pivot). **If only choosing one pivot per iteration M1 only** a1A1: First pass correct **and** next pivot(s) chosen correctly for second pass (but second pass does not need to be correct)

a2A1ft: Second and third passes correct (follow through from their first pass and choice of pivots) – **and** next pivot(s) chosen correctly for the fourth pass

a3A1: CSO (correct solution only – all previous marks in this part **must** have been awarded) including 'sort complete' – this could be shown by the final list being re-written or 'sorted' statement or each item being used as a pivot

b1M1: Bubble sort. Consistent direction, end number (greatest/least) in place. Do check these carefully as

Question	Schama	Marka
Number	Scheme	IVIAINS

some candidates show the result of each comparison and swap in the first pass

b1A1: First and second passes correct – so end two numbers in place

b2A1ft: Third and fourth passes correct following through from the candidate's second pass

b3A1: CSO (correct solution only) – including either a 'sort complete' statement **or** final list rewritten/sixth pass

c1M1: Choosing middle right pivot (choosing middle left is M0) + discarding/retaining half the list. So 53 (the 11^{th} value) found as a pivot and either rejecting the first 11or 10 values or retaining the final 9 or 10 values

c1Al : First and second passes correct i.e. 53 found and either using 67 to 91 in 2nd pass or discarding 9 to 53 (so therefore no 'sticky' pivots in the first two passes — sticky is when the pivot is retained in the next pass). Then 77 found and either using 67 to 75 in 3^{rd} pass or discarding 77 to 91

c2A1 : CSO - search complete + 'found' (accept 'found', 'located', 'stop', etc. but not just, for example, the number underlined; must be convinced that 68 has been located and is not a pivot or a number in a sublist with only one value)

Sorting list into descending order in either (a) and/or (b)

- If the candidate sorts the list into descending order and reverses the list then they can score full marks
- If the list is not reversed then mark as a misread (so remove the last two A marks earned). If the candidate says that the list needs reversing but doesn't actually show the reversed list then remove the final A mark earned

Misreads - if there is a 'misread' of a single number (this could take the form of an extra number, a number missing, or a number changed, for example, 13 rather than 31) before starting either sort or the binary search then mark as a misread. If they 'misread' more than one number then M0. If they miscopy one of their own numbers during the sort then this is an accuracy error and loses the corresponding A mark(s)

Using middle left quick sort in (a): (note: for full marks must identify 24 as a pivot but no sort complete statement required as pivoting on the 24 produces no further swaps)

18 18 18 <u>9</u> <u>9</u> <u>9</u>	29 29 29 18 18 18	48 9 <u>9</u> 29 24 24	3 9 31 24 24 27 27	42 37 27 27 <u>29</u> 29	$ \begin{array}{r} 31 \\ 24 \\ \underline{31} \\ \underline{31} \\ \underline{31} \\ \underline{31} \\ \underline{31} \\ \underline{31} \\ \end{array} $	37 27 <u>37</u> <u>37</u> <u>37</u> <u>37</u>	24 41 41 41 41 41	$\begin{array}{r} 27 \\ \underline{42} \end{array}$	41 48 48 48 48 48	p p p (s	ivot ivot(ivots ivot(ivot 2 sort c	42 s) 31 9, 3 s) 29 24 ompl-	1, (48) 37 9, (41) lete)
Rig	sht to	left	bubl	ole so	ort in	(b):							
				72	53	89	91	68	67	90	77	83	75
(en	d of	1 st p	ass):	53	72	67	89	91	68	75	90	77	83
(en	d of	2^{nd} g	pass):	53	67	72	68	89	91	75	77	90	83
(en	d of	3 rd p	ass):	53	67	68	72	75	89	91	77	83	90
(en	d of	4 th p	ass):	53	67	68	72	75	77	89	91	83	90
(en	d of	5 th p	ass):	53	67	68	72	75	77	83	89	91	90
(en	d of	6 th p	ass):	53	67	68	72	75	77	83	89	90	91 (sort complete)

working values must be correct for the corresponding A mark to be awarded e.g. at C the working values must be 12 11 10 – in that order (12 10 11 is incorrect).

The 20 in brackets in the working values at E is not required but if a candidate does have a value after the 16 then it must be this value only. This value, if present, must also be in the correct place (after the 16). Penalise any other/incorrect working values with the corresponding A mark. Lastly, it is also important that the order of labelling is checked carefully – some candidates start with a label of 0 at A (rather than 1) – which is fine. Also the order of labelling must be a strictly increasing sequence – so 1, 2, 3, 3, 4, ... will be penalised once (see notes below) but 1, 2, 3, 5, 6, ... is fine. Errors in the final values and working values are penalised before errors in the order of labelling.

Question Number	Scheme	Marks		

a1M1: A larger value replaced by smaller value at least once in the working values at either C or G or E or J a1A1: All values in A, B, F, D and C correct. The working values at C must be in the correct order. Condone lack of 0 in A's working value

a2A1: All values in G and H correct and the working values in the correct order. Penalise order of labelling only once per question (G and H must be labelled in that order and G must be labelled after A, B, F, D and C)

a3A1ft: All values in E and J correct on the follow through and the working values in the correct order. Penalise order of labelling only once per question (E and J must be labelled in that order and E labelled after all other nodes (excluding J)). Ignore additional working value of 20 at E - so the working values may read 19 17 16 20 – rather than 19 17 16 – which is fine – however 20 19 17 16 is incorrect and loses this mark

To follow through E check that all the working values at E follow from the candidate's final values from nodes C, D, G and H (in the order that the candidate has labelled these four nodes) and that the final value, and order of labelling, follows through correctly. Repeat this process for J (which will have working values from G and H)

a4A1: CAO for the route (from either A to J or J to A)

a5A1ft: If their answer is not 22 follow through their final value at J (condone lack of units)

For (b) candidates usually give either a general explanation or a demonstration of how they determined their shortest route. If a candidate gives both a general explanation and a demonstration then mark both and award the best mark (but do not mix the two schemes together)

General Explanation:

For the first B mark any indication of 'working backwards' or 'tracing back' through the network – it must be clear from the candidates explanation that they are considering working backwards through the network but give bod for seeing just the phrase 'working backwards' (oe)

For the second B mark we must see

- Working backwards from J
- Including an **arc** (XY) if the **difference** of the **final values** (of X and Y) is equal to the **weight** (of the arc XY)

Must include all the words in bold (or their equivalent, for example, distance for weight, edge for node,...) – technical language must be correct

Demonstration:

For the first B mark we must see two consecutive correct calculations working backwards from J for **their** network. They do not have to link the corresponding nodes for this first mark, for example, 22 - 7 = 15, 15 - 1 = 14 is sufficient for this mark (also note that 22 - 15 = 7, etc. is equivalent). Condone poor notation for this mark, for example, 22 - 7 = 15 - 1 = 14... is fine for B1

For the second B mark we must see all the correct calculations (so no follow through) from J to A **and** the linking of **all** arcs/nodes to these calculations, for example, J: 22 - 7 = 15 H, H: 15 - 1 = 14 G, etc. is acceptable. **All** values (including the 22 and 0) **and** nodes (including J and A) must be present

c1B1: CAO shortest route (A - B - F - D - G - E - G - H - J)c2B1: CAO correct length (26) – condone lack of units

Question Number	Scheme			
	e.g. (each arc contributes 1 to the orders of two nodes, and so) the sum of the orders of all the nodes is equal to twice the number of arcs	B1		
4. (a)	Which implies that the sum of the orders of all the nodes is even and therefore there must be an even (or zero) number of vertices of odd order hence there cannot be an odd number of vertices of odd order.	B1 (2)		
(b)	(Start at) D and (end at) E (or vice-versa)	B1 (1)		
(c)	A(C)B + D(BC)E = 120 + 300 = 420	M1		
	A(CB)D + B(C)E = 290 + 130 = 420	A1 (2 rows)		
	A(C)E + BD = 150 + 170 = 320*	A1 (3 rows)		
	Repeat arcs AC, CE and BD	A1 (4)		
(d)	Length $2090 + 320 + 130 = 2540 \text{ (m)}$	M1, A1 (2)		
(e)	(Finishing Point is) D	B1		
	Difference in routes = $2540 - (2090 + 130 + 130) = 190$ (m)	M1, A1 (3)		
		12 marks		
	Notes for Question 4			

a1B1: Either stating that the <u>sum</u> of the <u>order</u> of the <u>nodes</u> = 2(number of arcs) or that <u>each arc</u> contributes <u>1</u> to the <u>order</u> of <u>two nodes</u>. For this mark there must be a **clear correct statement linking the order of nodes to arcs**

a2B1: For stating that as the <u>sum</u> (of the orders) of the <u>nodes</u> is <u>even</u> this implies that there must be an <u>even</u> number of <u>nodes</u> of <u>odd</u> <u>order</u> (or there <u>cannot</u> be an <u>odd</u> <u>number</u> of <u>nodes</u> of <u>odd</u> <u>order</u>). Candidates may argue that if the <u>sum</u> (of the order) of the nodes is odd then this implies that the number of arcs cannot be integer valued (oe) which is fine. For this mark there must be a correct statement that the <u>sum</u> of the nodes is even together with the correct conclusion. Note that for the first B mark it must be clear that the candidate is considering the order of the nodes but for the second B mark it is sufficient to for candidates to say 'the sum of the nodes...'. Furthermore, it is possible to score BOB1 (for example, a candidate may simply state the sum of the nodes is even and state the correct conclusion which would score the 2nd B mark only)

b1B1: Correct start and finish points (D, E)

c1M1: Three distinct pairings of the **correct** four odd nodes

c1A1: Any two rows correct including pairings and totals

c2A1: All three rows correct including pairings and totals

c3A1: CAO correct **arcs** clearly (**not** just in their working) stated: AC, CE, BD. Accept ACE **or** AE via C. Do not accept AE

d1M1: 2090 + 130 + (their smallest total from (c)); must be at least two distinct pairings of the correct four odd nodes in (c) or for 2410 only (forgetting to add the additional 130)

d1A1: CAO (2540) – if no working seen then the correct answer implies both marks in (d)

e1B1: CAO (D)

e1M1: Their answer to (d) - (2090 + 130 + their BE) (if AB included in (d)) or their answer to (d) - (2090 + 160) their BE) (if AB not included in (d)) or (their smallest total (320) from (c) - their BE (130)) - by 'their BE' this is their smallest pairing which does not include A. This mark is dependent on either scoring the M mark in (c) or considering all three pairings (DE, BE, BD) that do not include A

e1A1: CAO (190) – condone lack of units – if the correct answer is seen with no calculation and/or method seen then award the M mark only. Candidates who did not include AB (130) in their inspection route (in (d)) can still earn full marks in (e) for the correct answer of 190

Question Number	Scheme	Marks
5.(a)	Kruskal: BC, AB, (not AC), DE, CD, DF, (not $\frac{BF}{CE}$), EJ, FH, (not HJ), (not BD), GH	M1 A1 A1 (3)
(b)	Prim: GH, FH, DF, DE; CD, BC; AB, EJ	M1; A1; A1 (3)
(c)	98 (km)	B1 (1)
(d)(i)	$\frac{m}{2}$	B1
(ii)	$\overline{n-1}$	B1
(iii)	$m \ge 2(n-1)$ (oe)	B1 (3) 10 marks
	Notes for Question 5	

a1M1: Kruskal's – first four arcs BC, AB, DE, CD,...(or weights 6, 7, 10, 11, ...) chosen correctly in order and at least one rejection seen at some point

a1A1: All eight arcs BC, AB, DE, CD, DF, EJ, FH, GH (or weights 6, 7, 10, 11, 13, 15, 16, 20) chosen correctly in order and no additional arcs

a2A1: CSO All selections and rejections correct (in correct order and at the correct time) – do not accept weights only for this mark

- Listing all the arcs in order and then listing those arcs in the tree in the correct order is fine for **full marks** (this implies that rejections are correct and at the correct time)
- Listing all the arcs in order and just drawing the MST is **M0**

b1M1: First four arcs correctly chosen in order (GH, FH, DF, DE, ... or weights 20, 16, 13, 10,...) or first five nodes{G, H, F, D, E,...} correctly chosen in order. If any rejections seen at any point then M1 (max) only. Order of nodes may be seen at the top of a matrix/table {-, -, -, 4, 5, 3, 1, 2, - }

a1A1: Prim's - first six arcs correctly chosen in order (GH, FH, DF, DE, CD, BC,... or weights 20, 16, 13, 10, 11, 6,...) or all nine nodes {G, H, F, D, E, C, B, A, J} correctly chosen in order.. Order of nodes may be seen at the top of a matrix so for the first two marks accept {8, 7, 6, 4, 5, 3, 1, 2, 9} (no missing numbers) a2A1: CSO - all arcs correctly stated and chosen in the correct order. They must be considering arcs for this final mark (do not accept a list of the weights of each arc, nodes or numbers across the top of the matrix unless the correct list of arcs (in the correct order) is also seen)

Misread: Starting at a node other than G scores **M1 only** – **must** have the first four arcs (or five nodes or numbers) correct (and in the correct order) – condone rejections seen for this mark

Starting at	Minimum arcs	Nodes	Order
	required for M1		
А	AB BC CD DE	ABCDE	12345
В	BC AB CD DE	BCADE	31245
С	CB AB CD DE	CBADE	32145
D	DE CD BC AD	DECBA	54312
Е	ED CD BC AD	EDCBA	54321
F	FD DE CD BC	FDECB	-54231
Н	HF DF DE CD	HFDEC	5342-1-
Ι	JE DE CD BC	JEDCB	-54321

c1B1: CAO (98) - condone lack of units

diB1: CAO (oe e.g. 0.5m)

diiB1: CAO

diiiB1: CAO (oe, for example, $n-1 \le \frac{1}{2}m$) – must include correct bracketing (if required) – do not accept strict inequality

The line x = 8 must be distinct from the other three lines in some way. Some candidates may show the strict inequality as a solid line and the other three lines as dashed lines – this is acceptable for all four marks in part (a). If a candidate has a mixture of dashed and solid lines (say two of each) then withold the final B mark earned

a1B1: x + y = 8 correctly drawn. Must pass within one small square of (0, 8), (4, 4) and (8, 0) a2B1: 3y = 9 + 2x correctly drawn. Must pass within one small square (0, 3), (6, 7) and sufficiently long

enough to define the feasible region

a3B1: 4y = x correctly drawn. Must pass within one small square of the origin and (8, 2)

a4B1: x = 8 correctly drawn. Must be sufficiently long enough to define the feasible region. This must be shown as a dashed line or distinctive from the other three lines (see note above)
Question Number					ç	Sch	neme	•					Marks	

b1B1: Region, R, correctly labelled – **all lines** must have been drawn correctly but condone x = 8 not distinct from the other three lines (so must have scored either B1B1B1B1 or B1B1B1B0 in (a))

Note that if no objective line is drawn then no marks in (c)

c1B1: Drawing a correct objective line – if their line is shorter than the length equivalent to that of the line from (0, 1) to (1.5, 0) then B0. Line must be correct to within one small square if extended from axis to axis c1M1: Candidates must have drawn either the correct objective line or its reciprocal. If they have drawn the correct objective line they must be solving x + y = 8 and 4y = x. If they have drawn the reciprocal objective line they must be solving x + y = 8 and 4y = x. If they have drawn the reciprocal objective line they must be solving x + y = 8 and 3y = 9 + 2x. Must get to either x = ... or y = ... (condone one

error in the solving of the simultaneous equations). The correct exact answer $\left(\frac{32}{5}, \frac{8}{5}\right)$, or for the reciprocal

(3, 5), can imply this mark

c1dA1: CAO – the correct exact coordinate $\left(\frac{32}{5}, \frac{8}{5}\right)$ or $\left(6.4, 1.6\right)$ or $\left(6\frac{2}{5}, 1\frac{3}{5}\right)$ - this mark is dependent on

the correct objective line seen (so must have scored the B mark). If B1 awarded then the correct answer with no working scores M1A1

d1B1: CAO or 17.6 or $17\frac{3}{5}$

e1B1: CAO vertex (7, 7) (accept x = 7, y = 7) e2B1: CAO value (35)

f1M1: $(k =)\frac{5}{3}$ or $\frac{3}{5}$ or 1.6 or 0.6 or $1\frac{2}{3}$ f1A1: CAO $(k =)\frac{5}{3}$ (oe)

a1B1: Any two of the four arcs (E, F, I or the dummy) drawn correctly (from correct vertex to correct vertex) – activities must be labelled with the correct letter (but condone no weights or arrows) and the dummy must be shown as a dashed line (but condone no arrow)

a2B1: All four arcs (E, F, I and the dummy) drawn correctly – must be labelled with the correct letter (but condone no weight or arrows) and the dummy must be shown as a dashed line (but condone no arrow) a3B1: CAO – all three activities (E, F and I) and the one dummy drawn correctly – activities must be labelled with the correct letter and the activities and dummy must have the correct arrows (**do check carefully that all arrows are present**) but condone lack of (or incorrect) weights on the activity arcs

In (b) the M marks are dependent on scoring at least the first mark in (a) In (b) the A marks are dependent on scoring at least the first two marks in (a)

b1M1: All top boxes complete (condone lack of 0 for the M mark only), values generally increasing in the direction of the arrows ('left to right'), condone one 'rogue' value (if values do not increase in the direction of the arrows then if one value is ignored and the remaining values do increase in the direction of the arrows then this is considered to be a single rogue value). Note that all values in the top boxes could be incorrect but it can still score the M mark if the values are **increasing** in the way stated above – **this mark is dependent on the first mark having being awarded in (a)**

Question Number	Scheme	Marks
$h1 \wedge 1 \cdot C \wedge c$	all values connect in the ten house this many is dependent on the first two	nonlia horing

b1A1: CAO – all values correct in the top boxes – **this mark is dependent on the first two marks having being awarded in (a)**

b2M1: All bottom boxes complete (condone lack of 39 and/or 0 for the M mark only), values generally decreasing in the opposite direction of the arrows ('right to left'), condone one 'rogue' – **this mark is dependent on the first mark having being awarded in (a)**

b2A1: CAO – all values correct in the bottom boxes – this mark is dependent on the first two marks having being awarded in (a)

c1M1: Attempt to find lower bound: (a value in the interval [80 - 104] / their finish time) or (sum of the activities / their finish time) or (as a minimum) an awrt 2.4

c1A1: CSO – either a **correct** calculation seen **or** awrt 2.4 **then** 3. An answer of 3 with no working scores M0A0

d1M1: Not a cascade (Gantt) chart. 4 'workers' used at most and at least 8 activities placed

d1A1: The critical (C, H, J, L) activities and A, B and D correct. A must be completed by its late finish time (22), B must be completed by its late finish time (13) and D must start after A and finish before its late finish time (32)

Activity	Duration	Time interval	IPA
С	8	0 - 8	-
Н	9	8-17	С
J	12	17 – 29	Н
L	10	29 - 39	J
А	5	0 – 22	-
В	7	0 – 13	-
D	5	5 - 32	Α

Now check the last 5 activities – the last two marks are for E, F, G, I and K only

First check that there are only three workers and that all 12 activities are present (just once)

Then check precedences (see table below) – each row of the table could give rise to 1 error only in precedences

Finally check the length of each activity and the time interval in which the activity must take place (interval is inclusive)

Activity	Duration	Time interval	IPA
Е	7	5 – 29	А
F	10	8 – 29	B, C
G	4	8-17	B, C
Ι	8	17 – 29	G, H
K	7	10 - 39	D

d2A1: 3 workers. All 12 activities present (just once). Condone **one** error **either** precedence **or** time interval **or** activity length, on activities E, F, G, I and K only (note: one activity could have more than one error, for example, activity G could have an error in duration and an error in IPA – this is two errors **not** one) d3A1: 3 workers. All 12 activities present (just once). No errors on activities E, F, G, I and K

PhysicsAndMathsTutor.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom