Edexcel Maths D1

Mark Scheme Pack

2001-2015

EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN
January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education
Subject DECISION MATHEMATICS 6689
Paper No. D1

EDEXCEL - LONDON EXAMINATIONS
Stewart House 32 Russell Square London WC1B 5DN
January 2001
Advanced Supplementary/Advanced Level
General Certificate of Education

EDEXCEL - LONDON EXAMINATIONS
Stewart House 32 Russell Square London WC1B 5DN
January 2001
Advanced Supplementary/Advanced Level
General Certificate of Education
Subject DECISION MATHEMATICS 6689

Subject DECISION MATHEMATICS 6689

EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN
January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN
January 2001
Advanced Supplementary/Advanced Level
General Certificate of Education

EDEXCEL - LONDON EXAMINATIONS
Stewart House 32 Russell Square London WC1B 5DN
January 2001
Advanced Supplementary/Advanced Level
General Certificate of Education
Subject DECISION MATHEMATICS 6689

Diagram 3
(e) There is a cut of capacity $16 \ldots \ldots$ consorting \ldots af $E T, F T, A D$ and $B D \ldots$
[. Alt:... ET is saturated and FT. is saturated Orly . . possible route . . to T. © Then DT But as $A D$ and $B D$ are saturated no flow in to D is possible

EDEXCEL - LONDON EXAMINATIONS
Stewart House 32 Russell Square London WC1B 5DN
January 2001
Advanced Supplementary/Advanced Level
General Certificate of Education
Subject DECISION MATHEMATICS 6689

EDEXCEL - LONDON EXAMINATIONS
Stewart House 32 Russell Square London WC1B 5DN
January 2001
Advanced Supplementary/Advanced Level
General Certificate of Education

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN
June 2001
Advanced Supplementary/Advanced Level
General Certificate of Education
Final

Paper No. D1

| Question |
| :--- | :--- | :--- |
| number |

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Paper No. D1

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject DECISION MATHEMATICS 6689
Paper No. D1

EDEXCEL FOUNDATION
Stewart House 32 Russell Square London WC1B 5DN
June 2001
Advanced Supplementary/Advanced Level
General Certificate of Education

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN
June 2001
Advanced Supplementary/Advanced Level
General Certificate of Education

Subject DECISION MATHEMATICS 6689
Paper No. D1

Question 2 Prims Algonthm (a) onls

Port (a) is worth \& mots. If thes une Pim they will get 2 mols maximum Put S.C in the morsin.
m_{1} - Their first 4 ars correct

- bree groving in a conrectad maner
A. - cao
E.G. For m morts
statirsct A f $A, G C, G \bar{F}, F D$ for m, station at $B \quad B C, C G, G F ; F D$ for m, statys at $C \quad C G, G F, F D, D E$ for m, staty at $D \quad D F, F G, G C, D E$ for M, starths at E ED, DF, $F G, G C$ for m , stating at $F \quad F D, F G, G C, D E$ for m, stakn, $G^{\prime} G C, G F, F D, D \in$ for m,

Q 5 a Ascending
MARH AS MISREAD-unless they reveree in (a)

Left is Right
905055402035302545
50 90 55 402035302545

So 53 40 20 90-35 302545
$50 \quad 55 \quad 40 \quad 20 \quad 35403012545$
$\begin{array}{lllllll}50 & 55 & 40 & 20 & 35 & 30(9035 & 45\end{array}$
$\begin{array}{lllllllllllll}50 & 55 & 40 & 20 & 35 & 30 & 25 & 40 & 45\end{array}$
$50(55 \quad 40) 20 \quad 35 \quad 30 \quad 15 \quad 4590$ (M1A))
50405203530254590
$\begin{array}{lllllllllllllll}50 & 40 & 20 & 55 & 35 & 30 & 45 & 90\end{array}$
$50 \quad 40 \quad 20 \quad 35 \quad 55302545 \quad 90$
$50 \quad 40 \quad 20 \quad 35 \quad 30(55 \quad 254590$
$50402035 \quad 3025 \quad 554390$
$50402035 \quad 302545 \quad 5590$ (A1J)
$40 \widehat{50} 20335302455590$
4020 50 35 303545.5590
$40 \quad 20 \quad 35(50 \quad 3025 \quad 45 \quad 5590$
$40 \quad 20 \quad 35 \quad 30<2023 \quad 45 \quad 5590$
42 20 $353025(524559 \mathrm{~d}$
(40 20$) 353025 \quad 4550 \quad 5590$ (AlN)
204035302545505590
$20 \quad 3540 \quad 30\rangle 25 \quad 45 \quad 50 \quad 5590$
$20353040 \quad 2545505590$
203530254045585590
$2030(35 \quad 254045 \quad 50 \quad 5590$
$20<30 \quad 25) 354045 \quad 50 \quad 5590$
$20 \quad 25 \quad 30 \quad 354045$ SO 5570 (Alcss)

New silladt
$(A) 2 A^{\prime} 7$

$905055402035(30 \quad 2545$ 9050554020 (55 25 3045 90 50 55 $40 \quad 20 \quad 2 \quad 35 \quad 30$ i5 9050 55 20 $4025 \quad 35 \quad 3045$ $90 \quad 50 \quad 205540 \quad 25 \quad 35 \quad 3045$
 $1($ MIAI $20 \quad 70 \quad 5055 \quad 4025353045$ $20 \quad 90 \quad 50 \quad 5540 \quad 4530 \quad 3545$ $2 5 2 0 \quad 5 0 \longdiv { 5 5 } 4 0 3 0 3 5 4 5$ 2090 50 25 5540303545 20 (90 25 $50 \quad 5540 \quad 30 \quad 35 \mathrm{~L} 5$
$(\operatorname{Aiv}) 20 \quad 25 \quad 905055(40303545$
$2025 \quad 9050(5530) 4503545$ $20 \quad 259050305543545$ थ. 2598 98 30 50 50354.5
(AIV) $20 \quad 2530 \quad 90 \quad 50 \quad 55403545$ 202530 90 $50 \sqrt{55} 354045$ $20 \quad 25 \quad 30 \quad 90(5035554045$ $202530(9035) 50554045$ $\frac{20 \quad 25 \quad 30 \quad 35 \quad 90 \quad 50(554045}{20 \quad 25} 3035 \begin{array}{lllll}50 & 40 & 5545\end{array}$ $10253035(9040505545$

 202530354090455055 \begin{tabular}{llllll}
20 \& 25 \& 30 \& 35 \& $40 \quad 45$ \& $90 \quad 50$

\hline

20 \& 25 \& 30 \& 35 \& 40 \& 45 \& 50 \& 40 \& 55

\hline 10$)$ \& 20 \& $i 5$ \& 30 \& 35 \& 40 \& 45 \& 50 \& 55

\hline
\end{tabular} $\begin{array}{lllllllll}1 & \text { (Alcio) } 20 \quad \text { is } & 30 & 35 & 45 & 50 & 55 \quad 90\end{array}$ stop.

No.s swlout
(a) 2A's

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education
Subject DECISION MATHEMATICS 6689
Paper No. D1

Question number	Scheme	Marks
(b) (6)	Possible paths $\begin{aligned} & N=1=A-2=D-4 \\ & N=1-A=2-D=4 \\ & \begin{array}{ll} A-2 & D-4 \\ B-3 & G-5 \\ & N-1 \end{array} \quad \text { or } \quad N=2-D=4 \\ & \begin{array}{ll} N-1 & D-4 \\ & B-3 \\ & G-5 \\ N-2 \end{array} \end{aligned}$ Gives second alternating path	BI BI (2) miA: A. Al (4) 6
() (i)	10 names so middle is $\left[\frac{1}{2}(10+1)\right]=6 \quad$ FEw SABINE must oceur after FEW so list reduces to 7. Osborne 8. Paul 9. Swift 10. Turner midalle location is $\left[\frac{1}{2}(10+7)\right]=9$ SWLFT SABINE munt oecur before suilFT, so list reducse to 7. Osborne 8. Paul middle locaton is $\left[\frac{1}{2}(7+8)\right]=8$ PALL SABONE must occur after PAUL, but there is no entro is hist after PAUL \therefore SABINE not in list Iterationo reduce list to maximum ungth, a follows $1000,500,250,125,62,31,15,7,3,1$ (Final iteration to check of $1 i, t$ of 1 is the correct name) ilaterations (aciat II)	A1r A1r $A_{\text {cso }}(5)$ mi A) (2) Cad 17

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN
January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education
Subject DECISION MATHEMATICS 6689
Paper No. D1

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN
January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject DECISION MATHEMATICS 6689
Paper No. D1

EDEXCEL FOUNDATION
Stewart House 32 Russell Square London WC1B 5DN
January 2002
Advanced Supplementary/Advanced Level
General Certificate of Education

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN
January 2002
Advanced Supplementary/Advanced Level
General Certificate of Education

Subject DECISION MATHEMATICS 6689
Paper No. D1

Question Number	Scheme	Marks
1.	6 1 18 12 9 0 5 13 14 18 12 13 14 9 6 1 0 5 18 14 13 12 9 6 1 5 0 18 14 13 12 9 6 5 1 0 18 14 13 12 9 6 5 1 0 18 14 13 12 9 6 5 1 0 Datchet (18), Wraysbury (14), Staines (13), Feltham (12), Halliford (9), Ashford (6), Poyle (5), Colnbrook (1), Laleham (0).	M1 A1 A1 A1 A1 (5) $(5$ marks)
(a) (b) (c)	No negative elements in the profit row. $\begin{aligned} & P=11, x=1, y=\frac{1}{3}, z=0 ; r=\frac{2}{3} s=0, t=0 \\ & P+z+s+t=11 \\ & \Rightarrow P=11-z-s-t \quad \text { so increasing } z, s \text { or } t \text { would decrease } P . \end{aligned}$	B1 (1) M1 A1; A1 (3) B1 B1 (2) (6 marks)
3. (a) (b)	$1-C$ $1-C$ $2-B$ $2-A$ $3-B$ and $4-E$ $3-D$ $5-D$ $2-B=4-C=1-E$ $2-D=5-E$	B1 B1 (2) M1 A1 M1 A1 (4) (6 marks)

[^0]Question

Question Number	Scheme	Marks
8. $\begin{aligned} & \text { (a) } \\ & \\ & \\ &(b) \\ &(c)\end{aligned}$	$x+y \geq 380$	B1
	$y \geq 125$	B1
	$2 x+4 y \leq 1200$	B1 (3)
	$c=3 x+2 y$	B1 (1)
	$y \quad \uparrow$	
	500	
	400	B1
	$x+y=380$	B1
	$300 \sim$	B1
	Feasible region	B1 (4)
	200	
	Use of profit line or points testing	M1
	Minimum intersection of $x+y=380$ and $2 x+4 y=1200$ $x=160, y=120$, cost $=£ 920$	A1 A1 (3)
(d)	Maximum at intersection of $y=125$ and $2 x+4 y=1200$	M1
	$x=350, y=125$, cost $=£ 1300$	A1 A1 (3)
		(14 marks)

EDEXCEL DECISION MATHEMATICS D1 (6689) - NOVEMBER 2002 PROVISIONAL MARK SChEme

Question Number	Scheme	Marks
1. (a) (b)	$\begin{equation*} (A, X, D, V), C, W, B, Y, A \tag{2} \end{equation*}$	M1, A1 M1 A1 (2) (4 marks)
2. (a) (b)	H, I and J all depend on E, but I and J depend only on E whereas H depends on E and C and D and F	M1 A1 $(A \rightarrow F)$ A1 (dummy) A1 $(G \rightarrow M)$ A1 (1 start + 1 finish) (5) B1 (1) (6 marks)

| Question |
| :--- | :--- | :--- |
| Number |

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \& Marks \\
\hline \begin{tabular}{l}
7. (a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\(A, E\) and \(G\) \\
45 \\
e.g EHD-2 \\
ECHD - 1
\end{tabular} \& \[
\begin{aligned}
\& \text { B2, 1, } 0 \\
\& \text { B1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \\
\& \\
\& \text { M1 A1 } \\
\& \text { M1 A1 } \\
\& \hline
\end{aligned}
\] \\
\hline (d)

(e) \& \begin{tabular}{l}
B

Maximum Flow 48

Max flow - Min cut theorem

Cut through $D B, D C, D H, D G, D F$

 \&

M1

A1

(2)

(14 marks)
\end{tabular}

\hline
\end{tabular}

(a)

Question number	Scheme	Marks
3.	$\begin{array}{lll} y+z \leq \frac{1}{2} x & \Rightarrow & 2(y+z) \leq x \\ y \geq \frac{10}{100}(x+y+z) & \Rightarrow & x+z \leq 9 y \\ y \geq \frac{20}{100}(x+y+z) & \Rightarrow & x+z \geq 4 y \\ z \geq \frac{1}{2} y & \Rightarrow & 2 z \geq y \\ x \geq 0, y \geq 0, z \geq 0, & \\ x+y+z \geq 250 & & \end{array}$ objective function: minimise; $c=20 x+26 y+36 z$	B1 (1) M1 A1 (2) M1 A1 (2) B1 B1 B1; B1 (4) $(9$ marks)
4. (a) (b) (c) (d)	B and E are the only odd vertices, repeating a route between them will make them even $\begin{aligned} & B A+A E=17+x \\ & B D+D E=2 x+9 \\ & B C+C E=21 \\ & 2 x+9<x+17 \text { and } 2 x+9<21 \\ & \quad x<8 \quad \text { and } \quad x<6 \end{aligned}$ $\therefore 0<x<6$ for both to be true in context If $x=7$, repeated route is $B C+C E$ Total time is $(3(7)+47)+21=89$	 M1 (1) M1 A1 M1 A1 A1 B1 M1 A1 (3) (9)

Question number	Mark scheme	Marks
1.	$\begin{aligned} & \text { e.g. } C-2=A-5=E-4 \text { cs } C=2-A=5-E=4 \\ & F-1=B-3=D-6 \text { cs } F=1-B=3-D=6 \\ & \therefore A=1, B=3, C=2, D=6, E=4, F=1 \end{aligned}$	M1 A1 M1 A1 A1 \quad (5) (5 marks)
$2 .$ (a) (b)	Each arc contributes 2 to the sum of degrees, hence this sum must be even. Therefore there must be an even (or zero) number of vertices of odd degree. If $x>9,10 \frac{1}{2} x-26=100$, $\begin{equation*} \Rightarrow x=12 \tag{4} \end{equation*}$ (If $x<9,11 \frac{1}{2} x-35=100 \Rightarrow x=11 \frac{17}{23}$ inconsistent)	$\begin{equation*} \text { B2, 1, } 0 \tag{2} \end{equation*}$ B1, M1 A1 A1 (6 marks)
3. (a) (b) (i) (ii)	For example: - In Prim the tree always 'grows' in a connected fashion; - In Kruskal the shortest arc is added (unless it completes a cycle), in Prim the nearest unattached vertex is added; - There is no need to check for cycles when using Prim; - Prim can be easily used when network given is matrix form Either $A C, A B, B D, B E, E F, E G$ (if starts at A or C) or $B D, B A, A C, B E, E F, E G$ (if starts at B or D) or $E F, E G, B E, B D, B A, A C$ (if starts at E or F) or $G E, E F, B E, B D, B A, A C$ (if starts at G) $E F, A C, B D, B A, E G, B E$	B3, 2, 1, 0 (3) M1 A1 M1 A1 (7 marks)

Question number	Mark scheme	Marks
4. (a)	For example	
	$\begin{array}{lllllllll} R & P & B & Y & T & K & M & H & G \end{array}$	M1 A1
	B (H) G K R \quad P $\quad Y$ (T) M W	A1 ft
	B G H K R P M T Y W	A1 ft
	(B) G H K M R P T W Y	A1 ft (5)
	$\begin{array}{lllllllllll}B & G & H & K & M & P & R & T & W & Y\end{array}$	
	$\left[\frac{10+1}{2}\right]=6$ Palmer; reject Palmer \rightarrow Young	M1 A1
	$\left[\frac{5+1}{2}\right]=3$ Halliwell; reject Boase \rightarrow Halliwell	A1
	$\left[\frac{4+5}{2}\right]=5$ Morris; reject Morris	
	List reduces to Kenney - name found, search complete	A1 (4)
		(9 marks)

\begin{tabular}{|c|c|c|}
\hline Question number \& Mark scheme \& Marks

\hline 6. (d) \& For example: \&

\hline \multirow[t]{3}{*}{(cont.)

(e)} \& Point testing: test all (5) points in feasible region find profit at each and select point yielding maximum \& B1

\hline \& Profit line: draw profit lines with gradient $-\frac{3}{5}$ select point on profit line furthest from the origin \& | B1 |
| :--- |
| (2) |

\hline \& Optimal point is (6, 7); make 6 Oxford and 7 York \& M1; A1 ft

\hline \& Profit $=£ 5300$ \& \[

$$
\begin{equation*}
\mathrm{A} 1 \mathrm{ft} \tag{3}
\end{equation*}
$$

\]

\hline \multirow[t]{3}{*}{(f)} \& The line $3.5 x+4 y=49$ passes through (6,7) so reduce finishing by $\underline{7}$ hours \& M1 A1 ft A1

\hline \& \& (3)

\hline \& \& (15 marks)

\hline
\end{tabular}

Q. (cont) | Question |
| :--- |
| Number | (d)

Question Number	Scheme									Marks		
8.	(a)	$x+2 y+4 z \leq 24$								B1		
	(b) i $\quad x+2 y+4 z+s=24$									B1 $\sqrt{ }$		
	ii	$s(\geq 0)$ is the slack time on the machine in hours								B1		
	(c) 1 Euro									B1		
	(d)	b.v	x	y	z	r	s	value	$\mathrm{R}_{1}-6 \mathrm{R}_{2}$ $\mathrm{R}_{2} \div 4$ $\mathrm{R}_{3}+4 \mathrm{R}_{2}$	M1		
		r	3/2	2	0	1	$-3 / 2$	14			$\begin{aligned} & \text { A1 } \sqrt{ } \\ & \text { A1 } \end{aligned}$	
		z	1/4	1/2	1	0	1/4	6				
		p	0	-1	0	0	1	24				
		b.v	x	y	z	r	s	value				
		y	3/4	1	0	1/2	3/4	7	$\mathrm{R}_{1} \div 2$	M1		
		z	-1/8	0	1	-1/4	5/8	5/2	$\mathrm{R}_{2}-1 / 2 \mathrm{R}_{1}$		$\begin{aligned} & \mathrm{A} 1 \sqrt{ } \\ & \mathrm{~A} 1 \end{aligned}$	
		p	3/4		0	1/2	1/4	31	$\mathrm{R}_{3}+\mathrm{R}_{1}$		A	(3)
		Prof	t $=31$	Euros	$y=$	$=7 \mathrm{z}$	$=2.5$ ge	$x=r=$	$=0$	M1		A1 $\sqrt{ }$ (3)
		Cannot make 1 1/2 a lamp								B1		(1)
	(f)	e.g. ($0,10,0$) or $(0,6,3)$ or ($1,7,2$)								B1		
		checks in both inequalities								B1		(2)
												16

Question	Mark Scheme	Marks	
1. (a)	A graph consisting of two distinct sets of vertices X and Y in which... arcs can only join a vertex in X to a vertex in Y .	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	(2)
	A path from an unmatched vertex in X to an unmatched vertex in Y... ..which alternately uses arcs in/not in the matching.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	(2)
(c)	The (1-1) matching / pairing of some elements of X with elements of Y.	B1	
(d)	A 1-1 matching between all elements of X onto Y	B1	(2)
		(6)	
2. (a)	Yes, there are no negative values in the profit row	B1	(1)
(b)	$p=63, x=0, y=7, z=0, r=\frac{9}{2}, s=\frac{2}{3}, t=0$	$\begin{aligned} & \text { M1, A1, } \\ & \text { A1, } \end{aligned}$	(3)
	$\frac{63}{7}=9$	M1, A1	(2)
			(6)

Question	Mark Scheme	Marks
7. (a) (b) (c)	See overlay Either point testing or profit line $\mathrm{A}\left(3 \frac{5}{6}, 3 \frac{1}{2}\right) \rightarrow 25 \frac{1}{6}, \mathrm{~B}\left(8 \frac{1}{2}, 3 \frac{1}{2}\right) \rightarrow 34 \frac{1}{2},$ Accept $\mathrm{C}(4,8) \rightarrow 48$ and $\mathrm{D}(3,6) \rightarrow 36$ Profit line gradient $-\frac{2}{5}$ Identifies A $\left(3 \frac{5}{6}, 3 \frac{1}{2}\right) \quad$ cost $25 \frac{1}{6}$ Either point testing or profit line $A\left(3 \frac{5}{6}, 3 \frac{1}{2}\right) \rightarrow$ not integer so try $(4,4) \rightarrow 20$ Profit line $B\left(8 \frac{1}{2}, 3 \frac{1}{2}\right) \rightarrow$ not integer so try $(8,4) \rightarrow 32$; $\rightarrow \operatorname{try}(7,5) \rightarrow 31$ gradient - $\frac{3}{2}$ Accept $\mathrm{C}(4,8) \rightarrow 28$ and $\mathrm{D}(3,6) \rightarrow 21$ Identifies $(8,4)$ profit 32.	$\begin{aligned} & \text { B5, 4, 3, 2, } \\ & 1,0 \\ & \text { M1 } \end{aligned}$ A1 A1, A1 M1 A1 A1 A1
8. (a) (b) (c) (i) (ii) (d) (e)	$x=0, y=7, z=9$ Length $=22$, critical activities B D E L Float on $\mathrm{N}=22-14-3=5$ Float on $\mathrm{H}=16-5-3=8$ See overlay Attempt at 1. e.t. and e.e.t. 22 hours	B1, B1, B1, B1, B1, (2) B1 M1 A1 (3) B4, 3,2,1,0 M1 A1 (2) (14)

Question Number	Scheme	Marks
1. (a)	$A \sim 1 a$	
	G	
	L	
	N c	B1 B1 (2)
	P	
	$S \longrightarrow{ }_{5}$	
(b)	For example:	
	(i) $P-2=L-4 \quad$ c.s. $P=2-L-4$	M1
	(ii) $S-2=L-1 a=A-3$ c.s. $S=2-L=1 a-A=3$ giving	A1
	$A-1, \quad G-1, L-4, \quad N-5, \quad P-2$	
	$A-3, \quad G-1, L-1, N-5, \quad S-2$	A1 (3)
(c)	Sam must do 2 and Nicola must do 5, leaving Philip without a task.	B2, 1, 0 (2)
		(7 marks)

EDEXCEL DECISION MATHEMATICS D1 (6689) - JUNE 2004 PROVISIONAL MARK SCHEME

EDEXCEL DECISION MATHEMATICS D1 (6689) - JUNE 2004 PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
3. (a)	Idea of travelling along each arc at least once and seeking to do so in a minimum total. Practical meaning of arcs/numbers.	B1 (1)
(b)	$A B+D F=32+9=41$	M1 A1
	$A D+B F=25+15=41$	
	$A F+B D=18+24=42$	A1
	Repeat either $A E+E B$ and $D F$ or $A D$ and $B F$	A 1 ft (4)
(c)	Not unique, e.g. gives other solution	A1 ft
(d)	$258+41=299$	B1 (2)
(e)	$D F$ is the shortest so start/finish at A / B	M1 A1 (2)
		(9 marks)

EDEXCEL DECISION MATHEMATICS D1 (6689) - JUNE 2004 PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
6. (a)	$\begin{array}{ll} \text { Maximise } P= & 30 x+40 y \quad(\text { or } P=0.3 x+0.4 y) \\ \text { subject to } & x+y \geq 200 \\ & x+y \leq 500 \\ & x \geq \frac{20}{100}(x+y) \Rightarrow 4 x \geq y \\ & x \leq \frac{40}{100}(x+y) \Rightarrow 3 x \geq 2 y \end{array}$	B1 B1 B1 M1 A1 A1 (6)
(b)	 (NB: Graph looks OK onscreen at 75\% magnification but may print out misaligned)	B1 ft $\begin{aligned} & (x+y=200 \\ & x+y=500) \end{aligned}$ B1 ft $(y=4 x)$ B1 ft $(2 y=3 x)$ B1 ft (shading) B1 (labels)

EDEXCEL DECISION MATHEMATICS D1 (6689) - JUNE 2004 PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
6. $\quad(c)$	Point testing or profit line	A1
(cont.)	Intersection of $y=4 x$ and $x+y=500$	
$(100,400) \quad$ Profit $=£ 190$ (units must be clear)	A1	

November 2004 6689 Decision Mathematics D1 Mark Scheme

Question Number	Scheme	Marks
6 (a)	$\begin{aligned} & \text { Via A HEAG lenslt } 165+5 x \\ & \text { Vi\& B HECBG Lanst } 265+2 x \\ & 165+5 x<265+2 x \Rightarrow x<33 \frac{1}{3} \end{aligned}$ So ranse is $0 \leq x<33^{\frac{1}{3}}$	ml Al Ars A.d (4) $m_{1} A_{1}$ $A^{\prime}(3)$
		Air (3) 110

EDEXCEL
190 High Holborn London WC1V 7BH
January 2005
Advanced Subsidiary/Advanced Level
General Certificate of Education

EDEXCEL

190 High Holbom London WC1V 7BH
January 2005
Advanced Subsidiary/Advanced Level
General Certificate of Education
Subject: Decision Maths
Paper: D1

EDEXCEL

190 High Holborm London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education
Subject: Decision Maths
Paper: D1

EDEXCEL

190 High Holborn London WC1V 7BH
January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:
Decision Maths
Paper: D1

Question Number	Scheme	Marks
6) (a)	SADT-8 SCET-11 SBFT-9	B 2, 1,0
		BI (3)
(c)	(i)	
		$m 1$
	$s \ll \underset{x \rightarrow 0}{ }$	$A_{1} \text { (2) }$
	$\cdots \quad-9$	Al
	SACDT-2 SCFT-6	Al (3)
	$S A C E F T-3 \text { SACFT-1 max flow } 40$	Al (3)
	(ii) eg .	$\begin{array}{ll} m_{1} & \\ \text { Al } \end{array}$
	(iii) max flow-mincut theorem cut $A D, C D, D \in \in T, \in F, C F, B C, S B$ ie $\{S A C \in\}\{B D F T\}$	$\begin{aligned} & m 1 \\ & A 2,0 \text { (3) } \end{aligned}$
(d)	Idea of a directed flow through a syptem of ars from sto I practical	$\begin{array}{rr} B 1 & (1) \\ & 14 \end{array}$

EDEXCEL

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education
Subject: Decision Maths
Paper: D1

Question Number	Scheme	Marks
7) (a) (b) (C) (d)	maximize $P=50 x+80 y+60 z$ subject is $\begin{aligned} x+y+2 z & \leq 30 \\ x+2 y+z & \leq 40 \\ 3 x+2 y+z & \leq 50 \end{aligned}$ where $x, y, z \geqslant 0$ Initialising tablease choves correct pivot, divides R_{2} by 2 state, correct row operations $R_{1}-R_{2}, R_{3}-2 R_{2}, R_{4}+80 R_{2}, R_{2} \div 2$ The solution found after one iteration has a clack of 10 units \& black perday (i) (ii) NCA optimal, a negative value in prffit now (iii) $\begin{aligned} & x=0 \quad y=16^{2 / 3} \quad z=6^{2} / 3 \\ & P= \pm 1733.33 \quad r=0, \quad s=0, \quad t=10 \end{aligned}$	

publication scheme.
June 2005 6689 Decision D1
Mark Scheme

4)(a)	Reference to K, J, G and $L-K$ depends on J and G, but L depends on G only Both m and N must be uniquely represented in temus everts.	$\begin{array}{lll} m_{1} & \\ A_{1} & \\ A_{1} & \\ A_{1} & \\ & (4) \\ B 2,1,0 \\ B 1 & (3) \end{array}$ [7]
5) (a)	$E-4=B-2=D-1=A-3=C-5 \quad$ change statios t give matching $A=3 \quad B=2 \quad C=5 \quad D=1 \quad E=4$ $E-4=B-2=0-3=<-5 \quad$ chense status t give mationiog $A=1 \quad B=2 \quad C=5 \quad D=3 \quad E=4$ e.9. Reference to $B+E$ and $4+2$	
6) (a)	Route: $A C F E G J$ length: 53 km General explaniation - trace back from J - Includa ore $x y$ if Yis alkady on path and if differesce infricl ludeb equals lengthof ore. e.g. ADFEGJ or $A C \in G J$; length 54 km	ml A_{1} Al Ald AI (3) B $2 \sqrt{15} 0$ (2) miat;(41)(3) (10)

June 2005 6689 Decision D1 Mark Scheme

Q1 mI. Pivot clear list $>P>$. Bustle tort eke. mo
A $11^{\text {th }}$ pan correct, next pivats correctly selected consistently
A If $2^{\text {nd }}+3^{\text {rd }}$ panes correct, pivot for next pan selected consituth each time. Penalise fragmented 45 here A 1 c.s.a. + stop statement (one.). Penalise nom-sis no. error here. Penalise "sloppgnes" her
A 1 c.a.o. accept c.a.even if mR.
2)(a) e.9. $A E B F C D A$
(b) $e .9$.

$M 1$	A	1
		(2)
$M 1$	$A 1$	$A 1$
		(3)
$B 2,1 / 0$		
		7

(c) States that one g these orcs (AF or EF) [Named], crosses at lear one arc in each set. [Named orc]
witter mos
Q 2 (a) mi Each letter present excictly once -apart from possibly stat + finish vertex
A, a correct route - Stats and finishes of A
(b) m_{1} cycle drawn as hexagon + at least 1 other arc added to diagram
A_{1} at least 2 ares added to hexagon
A) C.a.o.
(c) B2 Good explanation AF or $E F$ crones named "inside" orc + named "outsicto"erc. BIV AF or $E F$ cosses named orc. "clare". 'boet'sets BI. If I canning istle on

Q 1 Alternative correct answer

$$
54
$$

$$
m 1
$$

$$
63,54
$$

Al

$$
74,49
$$

$$
\begin{aligned}
& 28(68) \\
&(37)
\end{aligned}
$$

pt in list
(iv) $\begin{array}{llllllll}74 & 28 & 63 & 54 & 54 & 49 & 37 & 68 \\ 74 & 28 & 63 & 54 & 54 & 49 & 37 & 68\end{array}$

74	$m 1$
28	
63	AlV
(68) 54	
54	
44	
(37)	Al

Ath, Soptrie, Eun-Jing, Kate, Marciana. Pelor, Rory, Bobby

$$
\begin{aligned}
& \text { (iii) } 74 \begin{array}{lllllll}
74 & 28 & 63 & (54 & 54 & 49 & 37
\end{array} \quad 68 \\
& 74 \text { (63) } 68 \text { 54 } 28 \text { (54) } 49 \quad 37
\end{aligned}
$$

Q1 MISREADS
(a)

74	28	63	54	54	49	37	68	54		
28	54	49	37	54	74	63	68	49	63	
28	37	49	54		63	74	68	37	68	(54)
28	37	1	54		68	68	$(74$			

(b)

74	28	63	54	54	49	37	68
28	49	37	54	74	63	54	68
28	$(37$	$\sqrt{49}$		54	74	63	68
(28)	137	1		$\frac{63}{1}$	74	(68)	
1	1			68	(74)		

(c)

(d) $74 \quad \begin{array}{llllllll}74 & 28 & 63 & 54 & 54 & 49 & 37 & 68\end{array}$ 28 (49) 37 (54 74
(28) 374
(54)
(63) 5468
(74) 68
(37)
(68) 74
54
49,54
37,63
$68(28)$

AlN
m

Al

Als
$m n$ $m 1$

A, $28,74,(5 k)$

If condidates reverse $l i s t$ then restore full morks. names or numbers

Bobby, Rory, Peter, Kata + Morciana, Eun-Jeng, Sophie, Ali

Q2 some eg. Hamiltonion cydes + diagnams tor Q2
$A C F B D E A$
$A E D B F C A$

$A \in C F B D A$

$A C F B E D A$
$A D E B F C A$

3) (a) $A C+D F=8+9=17 \leftarrow$
$A D+C F=15+16=31$
$A F+C D=13+7=20$
length $=77+17=94 \mathrm{~km}$
(b) Shortest orc is $C D$ (7) so use A and F as end points

Q 3(a)M1 3 pairs of 4 odd vertus (different) $A \subset D F$
Al 2 pain + "total" correct
Al All 3 pain + total correct 173120
$\mathrm{ml} 77+$ thew shortest or plausilide list
AI JCaO $+\mathrm{Kmm}_{\mathrm{C}}$
(b) B2 CD identified as the smallest tu be repeated and A+F stated as end points
B) either CD identifed asmalustor be repeated or $A+F$ stated as and pointer 'bad set $B 1$

4 (a) M1 6 activities +1 dummy, activity on orc. Condone lack of events throughout
max\} A1 $A-F+$ anew + Istart

(b) B2 complete + clear K, J, G, L refered to explanation clear + correct

B1 Nearly there. "Bod "get BI, All there but confused explanation/vague. $k J \in L$ refored to
BI unique representation (ODe). stout + finish at same evert.
5) (a) $E-4=B-2=D-1=A-3=C-5$ change statiss t give
matching $A=3 \quad B=2 \quad C=5 \quad D=1 \quad E=4$
$E-4=B-2=D-3=C-5 \quad$ chense status t give matiturs $A=1 \quad B=2 \quad C=5 \quad D=3 \quad E=4$
(b) e.g. Reference to $B+E$ and $4+2$
[8]
Q 5 (a)m1. 1^{4} path E to 5
Al c.a. 0 + c.s.
A1 makhing $C . a . o$ must be doos mus \mathcal{J}
mi $2^{\text {na }}$ path $\in t \leq 5$
A1. c.a.0. + C.s. (don't penalisent cisice)
AI matching ca.o. must be dect, must S
(b) B2 Full cleor explanation B, E, 2 and 4 tutced. (+D) O.e - L8 of alternahis
B) Pabably 3 ourg 4 refened t, mas be explanation confured, suppefllous films artimest introchced. "b-odges 01"
(an

7) (a) r, s and t are unuaed amounts of bird seed (inkg), sust bleck and peanut (intes)
that polly has at the end of each week ofter she has madeup and s.id her packs. 1 B2,1, 0
(b)

b.v.	x	y	z	r	s	t	value	
2	$\frac{2}{5}$	$\frac{1}{2}$	1	$\frac{1}{10}$	0	0	14	$R_{1} \div 10$
s	$\left(\frac{2}{5}\right)$	-1	0	$-\frac{2}{5}$	1	0	4	$R_{2}-4 R_{1}$
t	$-\frac{1}{5}$	$\frac{1}{2}$	0	$-\frac{3}{10}$	0	1	18	$R_{3}-3 R_{1}$
p	-90	-25	0	65	0	0	9100	$R_{4}+650 R_{1}$

(c) $x=0 \quad y=0 \quad z=14 \quad r=0 \quad s=4 \quad t=18 \quad p=k 91$
(d) $P-90 x-25 y+65 r=9100 \quad$ (o.e.)
(e) $P=9100+90 x+25 y-65 r$

So increasing x or y would increase the pasfit
(f) The $\frac{2}{5}$ in the x column and $2^{\text {nd }}$ (s) rou.

MI AI
ml A2S, 15,0
$m 1$
$A 2 \int_{1} 0$
(B) 1
(3)
$B 2 \sqrt{\prime}, 0$
(2)
(15)

7 (a) B2 Ref to "unued";"bird seed, suet black \& peanut".
B1. Ref to "unveed" or biadseed ete or muddled explanation. "bed"se5 B, must engage with context
(b) MI correct pivet choen

A1 pive nos correct c.a.a. incl b.v.
$m_{1} f$ correct ras operations used (all 3)-at least I non zeo or 1 term correct in each ros. whel rou $V^{A} \Rightarrow m_{0}$ A2 N non-pivotal rows correct; - 1 each enor \mathcal{V} on enor in pivet chosiconly. penahie b.v once onb
(c) m) 3 vanäbles stated - must han completed b.v. + value columns (or 1'sand zeers) on tablean. Any regahise mo $A 2 \hat{r}$ all $7<00$ Need $19 i \wedge$ but accest 9100
AIS at least cao (condore $P=9100$)
(d) $m i \int P,(-190 x,(-) 25 y, 65$ rand 9100 (ar 91) all present and ane $=$ sign AIfCao (o.e.)
(e) (B)/ Stating that vicreasin, x or y would vicrease paft, pribally re-arransins parit equation. Ge nesus.
(f) B2 $\frac{2}{5}$ identified, x column and $2^{n a}(s)$ row. Accept ninged in lart tablaan

Q $7(b)$ notes

1) Wrong pint chesen in cot z. (-usudly 4) M_{0} then formiAzs

(a)	B.V.	x	y	z	r	,	t	value
(chount)	r	-1	$2 \frac{1}{2}$	0	1	$-2 \frac{1}{2}$	0	-10
	z	$\frac{1}{2}$	$\frac{1}{4}$	1	0	$\frac{1}{4}$	0	15
	t	$-\frac{1}{2}$	$1 \frac{1}{4}$	0	0	$-\frac{3}{4}$	1	15
	p	-25	$-187 \frac{1}{2}$	0	0	$162 \frac{1}{2}$	0	9750

$$
\begin{aligned}
& R_{1}-10 R_{2} \\
& R_{2} \div 4 \\
& R_{3}-3 R_{2} \\
& R_{4}+650 R_{2}
\end{aligned}
$$

(b)
(ihours)

$b v$	x	y	2	r	s	t	value
r	$\frac{2}{3}$	$-1 \frac{2}{3}$	0	1	0	$-\frac{10}{3}$	-60
s	$\frac{2}{3}$	$-1 \frac{2}{3}$	0	0	1	$-\frac{4}{3}$	-20
z	$\frac{1}{3}$	$\frac{2}{3}$	1	0	0	$\frac{1}{3}$	20
p	$-133 \frac{1}{3}$	$83 \frac{1}{3}$	0	0	0	$216 \frac{2}{3}$	13000

$$
\begin{aligned}
& R_{1}-10 R_{3} \\
& R_{2}-4 R_{3} \\
& R_{3} \div 3 \\
& R_{4}+650 R_{3}
\end{aligned}
$$

2) MISREADJ - use cd x or cot y
$-2 A$ morts if econed.
(a)

b.v.	x	y	2	r	s	t	value
r	0	(3)	2	1	-2	0	20
x	1	$\frac{1}{2}$	2	0	$\frac{1}{2}$	0	30
t	0	$\frac{1}{2}$	1	0	$-\frac{1}{2}$	1	30
p	0	-175	50	0	175	0	10500

$$
\begin{aligned}
& R_{1}-4 R_{2} \\
& R_{2} \div 2 \\
& R_{3}-R_{2} \\
& R_{4}+350 R_{2}
\end{aligned}
$$

(b)

b.v.	x	y	2	r	s	t	calue
y	$\frac{4}{5}$	1	2	$\frac{1}{5}$	0	0	28
s	$\left.1 \frac{1}{5}\right)$	0	2	$-\frac{1}{5}$	1	0	32
t	$-\frac{3}{5}$	0	-1	$-\frac{2}{5}$	0	1	4
1	-70	0	50	70	0	0	9800

$$
\begin{aligned}
& R_{1}-5 \\
& R_{2}-R_{1} \\
& R_{3}-2 R_{1} \\
& R_{3}+350 R_{1}
\end{aligned}
$$

8(a) m1 4 ors and ned rev the mo
A, c.a.o (dicgram 1 onls) penatix ampo emshere
(b) M1 4 ors, 2 numbess and 2 anas \vec{E} per are

Al c.a.o.

A_{4} all flas + nutes found to 17 more.
A3 $\geqslant 3$ flous reates to 15 more or flow cicreased abere 17 more.
$A^{2} \geqslant 3$ flaus + routes $t_{2} 11$ more or
A_{1} at least 2 flas + rantes fend to 5 more.
B) 113 c .a. O.
(d) ml consistent flou of 101^{+}, complete cleor (doent need $t \checkmark$ foom ((1)) A1 correct flew of 113 including arous
(e) M1 Floug 113 + ent athempted + max flow - minn un theorem nfered t (3 out g g)

Al cao
(f) B2 ans 4 bit there
B) 2 out 94 there.

2)
(a) $A B, B G, B F: G C, C D, D E$

J une 2006
6689 Decision Maths D1
Mark Scheme

 A1 First 2 panea correct
$\}$ Condore 'shinking'li,t.
A 1 I next 2 pan comect (if $L \in R$ next pan)
A1 Final pan + final statement/rewiteo list $c 50$ mout se what li, L
2) (a) A path from an unmatched vertex in x to an unmatzhed vertex in y, which alternataly uees ascs in/ not in the makthing. (where x and y are disfrict sets of vertice..)
(b)

$$
\begin{aligned}
& \text { e.g. } R-B=A-P \quad \text { c.s. } \quad R=B-A=P \\
& S-\bar{r}=m-C=D-k \quad c .1 . \quad S=\bar{F}-m=C-D=k \\
& \ddots A=P \quad D=k \quad H=Y \quad m=C \quad R=B \quad S=F
\end{aligned}
$$

(a) B2 A goad, somplato onswer

(b) AnI Path from/t R/s holfon k/P

AL C.a. 0 inct $s . s$.
Mil) Second path pom remaining LHvet. t remaining $R H$ vetax
Al $C a, 0$ inct $c, 1$ (rendie s, oub cna)
Ad must from 2 conect path sao

Notes for quection 1
Q 1 Bubsle $R \rightarrow L$

$$
\begin{array}{lllllll}
52 & 48 & 50 & 45 & 64 & 47 & 53 \\
64 & 52 & 48 & 50 & 45 & 53 & 47 \\
64 & 53 & 52 & 48 & 50 & 45 & 47 \\
64 & 53 & 52 & 50 & 48 & 47 & 45
\end{array}
$$

$$
m 1
$$

no furthe change-lit soted

Misread - sorting inta ancendic onder (note -if condidetes revere bst full crett si gaired)

$$
\begin{array}{rlllllll}
L \rightarrow R(\text { ancendins minead) } \\
& 52 & 48 & 50 & 45 & 64 & 47 & 53 \\
48 & 50 & 45 & 52 & 47 & 53 & 64 \\
48 & 45 & 50 & 47 & 52 & 53 & 64 \\
\hline 45 & 48 & 47 & 50 & 52 & 53 & 64 \\
\hline 45 & 47 & 48 & 50 & 52 & 53 & 64
\end{array}
$$ $m 1$

A 1

Al
No fowthe Lhonse - lit seeted A I
$4-2$ for $m \vec{R}$

$$
R \rightarrow L
$$

52	48	50	45	44	47	53
45	52	48	50	47	64	53
45	47	52	48	50	53	64
45	47	48	52	50	53	64
45	47	48	50	52	53	64

(mR) m_{1}
\qquad A1
\sim aforth changes - lit sorte
A1 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Note, for Q 2
(b) (i)

$$
\begin{aligned}
& R-B=A-P \\
& S-F=M-C=D-K
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& R-B=A-F=M-C=D-k \\
& S-F=A-P
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& S-F=m-C=D-K \\
& R-B=A-P
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& S-F=m-Y=H-B=A-P \\
& R-B=H-Y=m-C=D-k
\end{aligned}
$$

$$
\begin{aligned}
& A=P \\
& D=k \\
& H=Y \\
& M=C \\
& R=B \\
& S=F
\end{aligned}
$$

3)(a)

$$
\begin{aligned}
& A C+E G=44+35=79 \\
& A E+C G=41+36=77 * \\
& A G+C E=36+45=81
\end{aligned}
$$

Repeat $A D, D E, C F$ and $F G$
(b) length $=394+77=471 \mathrm{~km}$
(c) Since $E G$ is the smallest chase to repeat this hence start and fish of A and C.
(a) MI 3 pairs of thees add verier (different)

Al one paining and total comest -ie bore live correct
Ai all 3 paining and total comet.
AV correct ares identifeid-must 162^{+}parings to chare form. $A D D G \in G \in \in G$
(b) $\mathrm{BI} 471(\mathrm{Km}) 3 \pi L_{4}+$ thai shot bt - mut te 2 pain isp to cheer from.
 AI. \mathcal{C} from 2^{+}paine + total

shortert path: ABOFGI, kength: 108 milen
(d) $A B E D F \in I$ length 118 miles
m^{\prime}
A.
A)
(c) e.g.

$$
\begin{array}{ll}
108-21=87 & E I \\
87-15=72 & F E \\
72-21=51 & D F \\
51-28=23 & B D \\
23-23=0 & A B
\end{array}
$$

(c) e.g
or -tracaback from I

- include ave Xy if Y^{\prime} in alrodels, on the patl ond it the differenci in fricl labeb equabs it temph if ore

$$
A 1, A S_{(6)}
$$

(a) B2 A good, complate dexcription

BI close - mostly there. "bod" ses Bi "orte" "seris" man Le oh
(b) MI In D, F, G, H or I working valus, Iase nepleced by emall

A1 A, B, C, E comect Lable in a inzins seqqaxio. A1 D, F correct Labet $\boldsymbol{T}\}$ penakie orler of Ladellij
A J G H I correct Lated A
A) Path c.a.o.

Alf Lexth Ω from I acceit 108 if a conrect patt
(c) $B 2 \wedge$ complete vesion of one of H e 2 given explanotion:

BIf put ther bor one titp "bud" set B, - easy mok
(d) MI Rouke A to I including E
Al cao

Q. $5(a) M_{1}$ AU fap boxes completed \rightarrow increazing generally

AI CAO.
MI AU Lover buxa sompleted - decrasing geverally A) $c a \cdot o$
(b) AI ca. o al 7 listed-no exta,
(c) $B \backslash \mathcal{V} \subset 0, \mathcal{A}$ form diagrom $\quad t_{\text {ep }} \leq$ bittom a bett end

(d) M1 At least one of ther citical poths +3 non-criticalsbated induding fluab A1 cinticest achütie comect
A If 4 non-critical activitis comed \mathcal{A} prom diagram must include oftat pur ativity A1 CaO $=$ on non cirticel
(e) B I $\subset a$
——B2 $C a 0$
$B j$ if are extra or one omizion

D1 June 2006 Q6(b) - wang pint choir
(i) 10 in z column

bo	x	y	z	r	s	t	value	R_{n}	σ_{1}
z	$\frac{7}{10}$	1	1	$\frac{1}{10}$	0	0	360	$R_{1} \div 10$	m_{1}
s	$-\frac{12}{5}$	-3	0	$-\frac{6}{5}$	1	0	-720	$R_{2}-12 R$,	$A 1 /$
t	$-\frac{4}{5}$	-1	0	$-\frac{2}{5}$	0	1	960	$R_{3}-4 R_{1}$	B_{0}
P	7	5	0	6	0	0	21600	$R_{4}+60 R$	m_{0}

(ii) $L_{t \text { in }} 2$ column

\qquad

D1 Jure 2006 O 6(b) Misxads
(i) choos 7 is x column

b.v.	x	y	z	r	s	t	value	$R_{010} 03$		
x	1	$\left(\frac{5}{4}\right)$	0	$\frac{1}{2}$	$\frac{-5}{12}$	0	$509.9125 \ldots$	$R_{1}-\frac{10}{7} R_{2}$	407.43	
z	0	$\frac{1}{8}$	1	$-\frac{1}{4}$	$\frac{7}{24}$	0	150	$R_{2} \div \frac{24}{7}$	12ω	$\mathrm{~m}_{1}$
t	0	0	0	0	$-\frac{1}{3}$	1	$1367.930 \ldots$	$R_{3}-\frac{8}{7} R_{2}$		A_{1}
p	0	$-\frac{15}{4}$	0	$\frac{5}{2}$	$\frac{35}{12}$	0	$18030.612 \ldots$	$R_{4}+10 R_{2}$		

To my final tablean
(ii) Chozes 10 in y column
-2 for misread

b. v.	x	y	z	r	s	t	value	$R_{\text {a }} C_{p_{0}}$
y	$\frac{7}{10}$	1	1	$\frac{1}{10}$	0	0	360	$R_{1} \div 10$
s	$-\frac{3}{10}$	0	(3)	$-\frac{9}{10}$	1	0	360	$R_{2}-9 R_{1}$
t	$-\frac{1}{10}$	0	1	$-\frac{3}{10}$	0	1	1320	$R_{3}-3 R_{1}$
p	$\frac{7}{2}$	0	-5	$5 \frac{1}{2}$	0	0	19800	$R_{4}+5 S R_{1}$

$\left(\begin{array}{c}1^{4} 5 \text { mots } \\ \text { as sehere }\end{array}\right.$
i fo my find faslean
Neetle 4 mods as sctene
-2 for misroal

6 (a) $B 2\{$ First 3 equationn $x . a \cdot 0-1$ each error, but penalise only lemo pe gis: t B1) mopuialites got B_{0}

$$
B 2<a \text { o (B1 for a "lith st,") }
$$

 A 1 pivot ra cerrect c.a.c incluting b.v.
 A $1 \int_{\text {nen-pionted ras vorect, } i}$ on emor in pivet checice only

 AIN $c a 0$ induding b.v. best V frem previas talleo.

(4)A1 C.a.O.

 A $2 \sqrt{ }$ all 7 correct
A I \hat{L} at least 4 correct
7) (a) $C_{1}=103, \quad C_{2}=177, \quad f$ low $=76$
7) a) $81.103<40$

B1 177 cao
BI 76 cag
(b) M1 2 numbar added to each of the L_{t} ars Al cao
 owh if clecrly sapraneted from the rest A3 cull routes thos found to 22 more
$A^{2} 2$ routs + flos fand to 12^{+}
A' 1 d route + for fromd to 6^{+}
BI 98 <a o
(d) MI comsitent flow of 77^{+}, complete, lear (doent nad to V from ((1))

$$
A 1<a-0
$$

(e) mi Flow of $98+$ ant attamptad + max flow mincut theorm refard b (3 at 5 4)

$$
A: \subset a 0
$$

Mark Scheme (Results) J anuary 2007

CCE

GCE Mathematics

Decision Mathematics D1 (6689)

	January 2007 6689 Decision D1 Mark Scheme	XCel ${ }^{\text {axa }}$
Question Number	Scheme	Marks
1)	$\begin{aligned} & {\left[\frac{1+10}{2}\right]=6 \text { Nicky -reject top of hist. }} \\ & {\left[\frac{7+10}{2}\right]=9 \text { Trevor -reject bottom of list }} \\ & {\left[\frac{7+8}{2}\right]=\frac{8 \text { steve }}{} \text { - reject bitoin of lit }} \\ & {[7]=7 \text { Preety }- \text { reject }} \end{aligned}$ Nigel not in list.	m_{1} AI AI A^{\prime} 14
Question Number	Scheme	Marks
2) (a) (b) (c)	$G-3=J-4=L-5$ change status: " $G=3-J=4-L=5$ limproved matkhing: $\begin{aligned} & E=2 \\ & G=3 \\ & J=4 \\ & L=5 \end{aligned}$ e.g. Gearge and y_{i} wen may both only be anigred $b 3$ $Y-3=G-2=E-4=J-1$ change status: $Y=3-G=2-E=4-J=1$ complete matehing: $\begin{aligned} & E=4 \\ & G=2 \\ & J=1 \\ & L=5 \\ & Y=3 \end{aligned}$	

3) (a) A bipartite graph
(b)

$$
A, 3, B, 4, C, 1,0,2, A
$$

Identifying that it is nut planar

5(a)	e.9. Each edge contributes 2 to the sum of degrees, hence this sum must be even. Therefore there must be an even (or zero) number of vertics of odd deguee Hence ther can not be an odd number of vertices of odd dese	$\begin{array}{r} B 2,1,0 \\ (2) \end{array}$
(b)	$\begin{aligned} & C D+F H=200+220=420 * \\ & C F+D H=180+380=560 \\ & C H+D F=400+160=560 \end{aligned}$	$\begin{gathered} m \mid A 1 \\ A 1 \end{gathered}$
	repeat $C A, A D$ and $F H$	$A^{\prime 3}\left(L_{4}\right)$
(c)	length $=4180+420 \mathcal{J}=4600 \mathrm{~m}$	$B I \sqrt{ }(1)$

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Decision Mathematics D1 (6689)

June 2007
6689 Decision Mathematics
Mark Scheme

4) (a)	odd vertices B, D, F, H $\begin{aligned} & B D+F H=21+20=41 \\ & B F+D H=19+20=39 * \\ & B H+D F=23+18=41 \end{aligned}$ [Repeat $B E, E F, D G$ and $G H$] shortest route $=125+39=164 \mathrm{~km}$ Suek to kexp the least pairing $-0 F / 18$ Therefore stact/finish at B and H.	$\begin{aligned} & m: A 1 \\ & A \mid \\ & A 1 \\ & A \mid f(5) \\ & B \mid r \\ & B \mid \gamma(2) \\ & B \\ & B \end{aligned}$
5) (a) (b) (c) (d)	$M B, B E, M D, D C, C A$ $170+200+210+180+100=860$ (A cyde is formed when an are is aned that connects two vertices already connected to each other in the trac) Prims: algoithm obvap selects ares that bing a vertex not in the bea into the tree, so ryder carit hapreen	$\left\|\begin{array}{cc} M_{1} A_{1} & A_{1} \\ (3) \\ B Y & (1) \\ B 1 & (1) \\ B 2,1,0 \\ (2) \\ 77 \end{array}\right\|$

Mark Scheme (Pre-Standardisation) January 2008

GCE

GCE Mathematics (6689/01)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

January 2008 6689 Decision Mathematics D1 Mark Scheme

Question Number	Scheme	Marks
$\mid(a)(i)$ (ii) (b)	A path from an unmatched vertex in one set to an unmotched vertex in the other set.... .. Which alternataly uses ares not in 1 in the matching. A one-to-one pairing of some elements of one set with the other set e.g. $D-3=C-5$ change status $D=3-C=5$ $E-2=A-1$ chonge status $E=2-A=1$ $A=1 \quad B=4 \quad C=5 \quad D=3 \quad E=2$	$\begin{array}{lll} B 1 \\ B 1 & (2) \\ B 1 & \\ B 1 & (2) \\ m i A 1 \\ M 1 & A 1 \\ A 1 & (5) \\ & & 9] \end{array}$

Decision Maths D1 (6689) Jan 2008

Q1(a)i 1B1 Unmatched to unmatched
2B1 Alternate arcs not in/in [not vertices/nodes, not 'zigzag']
ii 3B1 One - to- one
4B1 Elements of one set with elements of the other.
(b) 1M1 'Path' starting at D or E , finishing at 1 or 5 - or vice versa.

1A1 A correct path - including change status.
2M1 'Path' from remaining unmatched (D/E) to unmatched (1/5) or v.v.
2A1 A second correct path - incl. c.s, but don't' penalise c.s. twice.
3A1 Complete matching, must follow through from two correct paths.
Possible alternating paths and matchings

Path 1	Path 2	A	B	C	D	E
D-3-C-1	E-2-A-1-C-5	1	4	5	3	2
D-3-C-1	E-4-B-1-C-5	2	1	5	3	4
D-3-C-5	E-2-A-1	1	4	5	3	2
D-3-C-5	E-4-B-1	2	1	5	3	4
D-3-C-4-B-1	E-2-A-1-B-3-D-4-C-5	1	3	5	4	2
D-3-C-4-B-1	E-2-A-1-B-4-C-5	1	4	5	3	2
D-3-C-4-B-1	E-4-C-5	2	1	5	3	4
D-4-B-1	E-2-A-1-B-3-C-5	1	4	5	3	2
D-4-B-1	E-2-A-1-B-4-D-3-C-5	1	4	5	3	2
D-4-B-1	E-4-D-3-C-5	2	1	5	3	4
D-4-B-3-C-1	E-2-A-1-C-5	1	3	5	4	2
D-4-B-3-C-1	E-4-D-3-B-1-C-5	2	1	5	3	4
D-4-B-3-C-5	E-2-A-1	1	3	5	4	2
D-4-B-3-C-5	E-4-D-3-B-1	2	1	5	3	4
E-2-A-1	D-3-C-5	1	4	5	3	2
E-2-A-1	D-4-B-3-C-5	1	3	5	4	2
E-4-B-1	D-3-C-5	2	1	5	3	4
E-4-B-1	D-4-E-2-A-1-B-3-C-5	1	3	5	4	2
E-4-B-3-C-1	D-3-B-1-C-5	2	1	5	3	4
E-4-B-3-C-1	D-3-B-4-E-2-A-1-C-5	1	4	5	3	2
E-4-B-3-C-1	D-4-E-2-A-1-C-5	1	3	5	4	2
E-4-B-3-C-5	D-3-B-1	2	1	5	3	4
E-4-B-3-C-5	D-3-B-4-E-2-A-1	1	4	5	3	2
E-4-B-3-C-5	D-4-E-2-A-1	1	3	5	4	2

Q2(a) 1M1 Pivot chosen \& 2 sublists, one $<$ pivot, one $>$ pivot
1A1 $\quad 1^{\text {st }}$ pass correct, all of the next set of pivots chosen, and done so consistently (condone 1 term lists)
1A1ft as above for $2^{\text {nd }}$ pass.
1A1ft All correct, follow through, pivots must be chosen consistently
(b) 1M1 Using Kruskal - CF then GI

1A1 First 4 arcs chosen correctly
2A1 All arcs chosen correctly (condone lack of rejection here)
3A1 All correct including rejections
(c) $\mathbf{B 1}$ cao

Alternative correct solutions

Middle left										
18	20	11	7	17	15	14	21	23	16	9
11	(7)	14	9	15	18	20	17	21	23	16
7	11	14	9		16	117	18	20	21	23
	11	9	14		16		18	20	21	23
7	9	11	1	15	16	17	18	20	21	23

First	2	11	7	17	15	14	21	23	16	9
(11)	7	17	15	14	16	9	[18]	(20)	21	23
(7)	9	111	(17)	15	14	16		20	(21)	23
7	(9)		(15)	14	16	17			[21]	(23)
1	[9]		(14)	[15]	(16)		1		1	123
7	9	11	14	15	16	17	18	20	21	23

Misreads - loose last 2 A marks earned (NOTE: Reversing list at end removes MR)

Middle left

18			7	17	(15		21		16	9
18	20	(17)	21	23	16	15	11	7	4	9
18	(20)	21	23	117	(16)		11	(14)	9	12
21	(23)	20	18		16		[14]	11	9	
23	(21)	1	18				1	11	(9)	
3	21	20	18			5	14			

Q3(a) 1M1 3 distinct pairings of their 4 odd nodes
1A1 one line correct (condone missing total)
2A1 2 lines correct including totals
3A1 All three lines correct including totals
4A1 15 letters, repeat CD and FG , start/finish A, A to G there.
5A1ft $11+$ thier minimum
(b)i 1B1 can 'twice' probably the trigger
ii 2B1 22
$381 \quad 22 \mathrm{~km}$

Question Number	Scheme	Marks	
4) (a)			
	17		
		M1 Al	
	(17) r^{\prime}		
		M1 Al	
		(4)	
	14		
(b)		$m 1$	
	Total float on $D=18 J-5-9=4 J$	A2, IV, 0	
	$\begin{aligned} & G=25-8-10=1 \\ & I=25-20-3=2 \end{aligned}$	$B 1(4)$	
(c)		$B 1$ (1)	
	Critical activities: $B E J \mathrm{~m}$		
(d)	$\begin{aligned} & \text { Lower bound }= \frac{102}{35}=2.914 \\ & \therefore 3 \text { workers }\end{aligned}$	$m 1$	
		A' (2)	
		11	
Q4(a) 1M1 Top 3 boxes completed, generally ascending L to R $1 \mathrm{A1} \mathrm{cao}$			
	2M1 Bottom 4 boxes completed, generally descending R to L		
	2A1 cao		
	(b) 1M1 Correct (ft) three numbers visible for at least one caiculation.		
	1A1ft one correct value (ft on D)		
	1A1 2 correct values		
	1B1 3 correct values (even if no working seen)		
	(c) 1B1 cao		
	(d) 1M1 102 $\div 35 \mathrm{ft}$		
	$1 \mathrm{A1} \mathrm{cao}$		

Question Number	Scheme	Marks
5) (a)	Dummy 1 is needed to show dependanas. F and F depend on C and B, but D deperd on B only Dummy 2 is needed so that each achivty con be uniquely represented in teims of it events. Q5(a) 1M1 Activity on arc, all activities present, condone lack of events 1A1 A,B,C,D and first dummy correct 2A1 E,F and second dummy correct (on E or F) 3A1 All arrows - including on dummies, one start and one finish (b) 1B1 Dummy 1 correctly justified - give bod 2B1 Dummy 2 correctly justified - give bod 3B1 A bonus for two.good answers	$m 1$ Al A. A 1 $\left(L_{C}\right)$ $B 3,2,1,0$ (3)

Question Number	Scheme	Marks
6 (a)	A cat divides the vertices into two sets, one set containing the source(s) and the othe the sink(s).	$B 21,0$ (2)
(b)		mi A_{1} (2)
(c)	E.g. $\begin{aligned} & \text { SBACEGT-9 } \\ & \text { SBADGEMT-1 } \\ & \text { SBFEHT -3 } \end{aligned}$ Flow value 67 Max flow-min cut theorem cut through $A D, A C, B C, E F, F H$	$\begin{gathered} m_{1} A_{1} \\ A_{1} \end{gathered}$ A_{1} (4)
		$\begin{aligned} & m_{1} \\ & A_{1}(2) \end{aligned}$
		BI (1)
(f)		$\begin{array}{ll} m_{1} \\ A_{1} & (2) \end{array}$
		13

Q6(a) 1B1 Close, bod, probably 2 out of three points below
2B1 Good complete answer, 2 'sets'; source and sink seperated; vertices
(b) 1M1 Two numbers on each arc

1A1 cao
(c) 1M1 1 correct route and a flow value stated. Any flow >9 gets M0

1A1 1 valid route with valid flow
2A1 2 distinct valid routes with valid flows found to >3
3A1 All routes and flows found to 13
(d) 1M1 Consistent flow pattern >55

1A1 cao
(e) 1B1 cao
(f) 1M1 Depends flow of 67,3 out of 4 words in theorem, çut attempted 1A1 valid cut

Routes

Do not use: SA or BC

Increases needed for solution:

(NOTE treat back flows as negative e.g. EG +9 and $\mathbf{G E}+1$ gives $\mathbf{E G}+8$)
$\mathrm{SB}+13$
AC+9
AD+1
BA +10
BF+3
CE +9
DG+1
EG+8
EH+4
$\mathbf{G T}+9$

Q7(a) 1B1 2 (or $1 / 2$) one correct side, condone any inequality or equals, or bod 2B1 cao
(b) 1B1 \quad Errors to look for: $y=60$ distinct in some way
\(\left.\begin{array}{l}2B1

3B1

4B1\end{array}\right\}-1\) e,e. | lines correct to ≤ 1 small square 1 at axis |
| :---: |
| Labels on lines |
| Ruler |

(c) 1B1ft R 'correct', ft their lines, but shading needs to be correct
(d) 1M1 Atteinpt at profit line (axis to axis) or point testing 2 points

1A1 Profit line correct (within I sm square) or three points tested correctly
2A1 cao
(e) 1B1 cao
(f) 1M1 Attempt at profit line (axis to axis) or point testing 2 points

1A1ft correct but ft their R and their (e) for profit line and 3 point testing
2A1 correct (so a mark for correct with no need to ft)
3A1 cao $(32,64)$ only
(g) 4A1 cao follow through (ignore units).

Mark Scheme (Results) Summer 2008

CCE

GCE Mathematics (6689/ 01)

June 2008
6689 Decision Mathematics D1
Mark Scheme

Question Number	Scheme	Marks
Q2 (a)	$\mathrm{G}-5=\mathrm{W}-3$ change status $\mathrm{G}=5-\mathrm{W}=3$	M1 A1
(b)	$\begin{aligned} & A=\text { no match } \\ & E=2 \\ & G=5 \\ & R=4 \\ & W=3 \end{aligned}$	A1 (1)
(c)	e.g. R is the only person who can do 1 and the only person who can do 4	B 2, 1, 0 (2)
(d)	$\mathrm{A}-2=\mathrm{E}-3=\mathrm{W}-4=\mathrm{R}-1$ $\text { change status } \mathrm{A}=2-\mathrm{E}=3-\mathrm{W}=4-\mathrm{R}=1$	M1 A1
	$\begin{align*} & \mathrm{A}=2 \\ & \mathrm{E}=3 \\ & \mathrm{G}=5 \tag{3}\\ & \mathrm{R}=1 \\ & \mathrm{~W}=4 \end{align*}$	$\mathrm{A} 1$ Total 8
	Notes: (a) 1M1: Path from G to 3 1A1: CAO including change status (stated or shown), chosen path clear. (b) $2 \mathrm{~A} 1:$ CAO must ft from stated path (c) 1B1: Correct answer, may be imprecise or muddled (bod gets B1) but all nodes refered to must be correct. 2B1: Good, clear, correct answer. (d) 1 M 1 : Path from A to 1 1A1: CAO including change status (stated or shown) but don't penalise twice. Chosen path clear. 1A1: CAO must ft from stated path Misread (remove last two A or B marks if earned.) $A-2=E-3$ c.s. $A=2-E=3$ Matching $A=2, E=3, R=4 W=5$ Then $\mathrm{G}-5=\mathrm{W}-4=\mathrm{R}-1 \text { c.s. } \mathrm{G}=5-\mathrm{W}=4-\mathrm{R}=1$ Matching $\mathrm{A}=2, \mathrm{E}=3, \mathrm{G}=5, \mathrm{R}=1, \mathrm{~W}=4$	

Question Number	Scheme	Marks
Q4 (a) (b)(i) (ii)	e.g. - Prims starts with any vertex, Kruskal starts with the shortest arc. - It is not necessary to check for cycles when using Prim. - Prims adds nodes to the growing tree, Kruskal adds arcs. - The tree 'grows' in a connected fashion when using Prim. - Prim can be used when data in a matrix form. Other correct statements also get credit. e.g. $\mathrm{AC}, \mathrm{CF}, \mathrm{FD}, \mathrm{DE}, \mathrm{DG}, \mathrm{AB}$. $\mathrm{CF}, \mathrm{DE}, \mathrm{DF}$, not CD, not EF, DG, not FG, not EG, AC, not AD, AB. [18, 19, 20, not 21, not 21, 22, not 23, not 24, 25, not 26, 27] Notes: (a) 1B1: Generous one correct difference. If bod give B1 2B1: Generous two distinct, correct differences. (b) 1M1: Prim's algorithm - first three arcs chosen correctly, in order, or first four nodes chosen correctly, in order. 1A1: First five arcs chosen correctly; all 7 nodes chosen correctly, in order. 2A1: All correct and arcs chosen in correct order. 2M1: Kruskal's algorithm - first 4 arcs selected chosen correctly. 1A1: All six non-rejected arcs chosen correctly. 2A1: All rejections correct and in correct order and at correct time.	B 2, 1, 0 (2) M1, A1, A1 (3) M1, A1, A1 (3) Total 8

Question Number	Scheme	Marks
Q5		
(a)	$x=9, y=11$	B1,B1 (2)
(b)	AC DC DT ET	B2,1,0 (2)
(c)	36	B1 (1)
(d)	$\mathrm{C}_{1}=49, \quad \mathrm{C}_{2}=48, \mathrm{C}_{3}=39$	B1,B1,B1
(e)	e.g. SAECT	B1 (1)
(f)	maximum flow $=$ minimum cut cut through DT, DC, AC and AE	M1 A1 (2)
	Notes: (a) 1B1: cao (permit B1 if 2 correct answers, but transposed) 2B1: cao (b) 1B1: correct (condone one error - omission or extra) 2B1: all correct (no omissions or extras) (c) 1B1: cao (d) 1B1: cao 2B1: cao 3B1: cao (e) 1B1: A correct route (flow value of 1 given) (f) $1 \mathrm{M1}$: Must have attempted (e) and made an attempt at a cut. 1A1: cut correct - may be drawn. Refer to max flow-min cut theorem three words out of four.	

Question Number	Scheme	Marks
Q8	Maximise ($\mathrm{P}=$) $0.2 a+0.15 b$ or $20 a+15 b$ o.e. Subject to $\begin{aligned} a+b & \leq 800 \\ a & \geq 2 b \\ 50 & \leq b \leq 100 \\ a & \geq 0 \end{aligned}$ Notes: 1B1: 'Maximise' 2B1: ratio of coefficients correct 3B1: cao 4B1: ratio of coefficients of a and b correct. 5B1: inequality correct way round i.e. $\square a \geq b$ 6B1: cao accept $<-$ accept two separate inequalities here 7B1: cao - Penalise $<$ and $>$ only once with last B mark earned - Be generous on letters $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}, \mathrm{x}$, y etc and mixed, but remove last B mark earned if inconsistent or 3 letters in the ones marked.	B1 B1 (2) B1 B2,1,0 B1 B1 (5) Total 7

Mark Scheme (Results) J anuary 2009

GCE

GCE Mathematics (6689/ 01)

Question Number	Scheme	Marks
(a) (b)	e.g. Sort complete. $1^{\text {st }}$ choice $\left[\frac{1+8}{2}\right] \rightarrow 5$ Lauren reject right $2^{\text {nd }}$ choice $\left[\frac{1+4}{2}\right] \rightarrow 3$ John reject right $3^{\text {rd }}$ choice $\left[\frac{1+2}{2}\right] \rightarrow 2$ Imogen reject right $4^{\text {th }}$ choice 1 Hannah reject List now empty so Hugo not in list Notes: (a) 1M1: quick sort, pivots, p, chosen and two sublists one $<$ p one $>p$. If choosing 1 pivot per iteration only M1 only. 1A1: first pass correct and next pivots chosen correctly/consistently. 2A1ft: second pass correct, next pivots correctly/consistently chosen. 3A1ft: third pass correct, next pivots correctly/consistently chosen. 4A1: all correct, cso. (b) 1M1: binary search, choosing pivot, rejecting half list. If using unsorted list, M0. Accept choice of K for M1 only. 1A1: first pass correct, condone 'sticky'pivot here, bod. 2A1ft: second pass correct, pivot rejected. 3A1: cso.	M1 A1 Alft Alft Alcso (5) M1 A1 Alft A1 (4) [9]

Question Number	Scheme	Marks
3 (a) (b)	$1^{\text {st }}$ dummy - D depends on B only, but E and F depend on B and C $2^{\text {nd }}$ dummy - G and H both must be able to be described uniquely in terms of the events at each end. Notes: (a) 1M1: one start and A to C and one of D, E or F drawn correctly 1A1: $1^{\text {st }}$ dummy (+arrow) and D, E and F drawn correctly 2A1: G, H, I and J drawn in correct place 3A1: second dummy (+arrow) drawn in a correct place 4A1: cso. all arrows and one finish. (b) 1B1: cao, but B, C, D, E and/or F referred to, generous 2B1: cao, but generous.	M1 A1 A1 A1 A1 (5) B1 B1 (2) [7]

Question Number	Scheme	Marks
4 (a) (b) (c)	Alternating path $\mathrm{B}-3=\mathrm{A}-5$ change status $\mathrm{B}=3-\mathrm{A}=5$ $\mathrm{A}=5 \quad \mathrm{~B}=3 \quad \mathrm{C}=2 \quad \mathrm{D}=1 \quad \mathrm{E}=6 \quad \mathrm{~F} \text { unmatched }$ e.g. C is the only person able to do 2 and the only person able to do 4 . Or D, E and F between them can only be allocated to 1 and 6 . Alternating path $\mathrm{F}-6=\mathrm{E}-1=\mathrm{D}-2=\mathrm{C}-4$ $\text { change status } \quad \mathrm{F}=6-\mathrm{E}=1-\mathrm{D}=2-\mathrm{C}=4$ $\mathrm{A}=5 \quad \mathrm{~B}=3 \quad \mathrm{C}=4 \quad \mathrm{D}=2 \quad \mathrm{E}=1 \quad \mathrm{~F}=6$ Notes: (a) 1M1: Path from B to 5 . 1A1: Correct path including change status 2A1: CAO my matching, may be drawn but if so 5 lines only and clear. (b) 1B1: Close, a correct relevant, productive statement bod generous 2B1: A Good clear answer generous (c) 1M1: Path from F to 4 . No ft. 1A1: Correct path penalise lack of change status once only 2A1: CAO may be drawn but if so 6 lines only and clear	M1 A1 A1 (3) B2, 1, 0 (2) M1 A1 A1 (3) [8]

Question Number	Scheme	Marks
(a) (b)	Odd vertices C, D, E, G $\begin{aligned} & \mathrm{CD}+\mathrm{EG}=17+19=36 \\ & \mathrm{CE}+\mathrm{DG}=12+25=37 \\ & \mathrm{CG}+\mathrm{DE}=28+13=41 \end{aligned}$ $\text { Length = } 543 \text { + } 36 \text { = } 579 \text { (km) }$ CE (12) is the shortest So repeat CE (12) Start and finish at D and G Notes: (a) 1B1: cao (may be implicit) 1M1: Three pairings of their four odd nodes 1A1: one row correct 2A1: all correct 3A1ft: 543 + their least = a number. Condone lack of km (b) 1 M 1 ft : Identifies their shortest from a choice of at least 2 rows. 1 A 1 ft : indicates their intent to repeat shortest. 2A1ft: correct for their least.	B1 M1 A1 A1 Alft (5) M1 Alft Alft (3)

Question Number	Scheme	Marks
Q6 (a) (b)	Shortest route: A B C E G H Length: 156 (km) New route: A B E G H Length: 165 (km) Notes: (a) 1M1: Dijkstra's algorithm, small replacing larger in at least one of the sets of working values at C, E, G or H 1A1: Values correct at vertices A to E. 2A1ft: Values correct at vertices F to H , penalise order only once. 3A1: cao 4A1ft: 156ft (b) 1B1: cao ABEGH 2B1: 165 Special Case Accept 166 if ABDGH listed as the path.	M1 A1 Alft A1 Alft (5) B1 B1 (2) [7]

Question
Number

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6689/ 01)

J une 2009
6689 Decision Mathematics D1
Mark Scheme

Question Number	Scheme	Marks
Q1 (a) (b) (c)	AD, AE, DB; DC, CF Weight 595 (km) Notes: (a) 1M1: Using Prim - first 2 arcs probably but condone starting from another vertex. 1A1: first three arcs correct 2A1: all correct. (b) 1B1: CAO (c) 1B1: CAO condone lack of km. Apply the misread rule, if not listing arcs or not starting at A. So for M1 (only) Accept numbers across the top (condoning absence of 6) Accept full vertex listing Accept full arc listing starting from vertex other than A [AD AE DB DC CF] \{145236\} ADEBCF BD AD AE CD CF $\{315246\} \quad$ BDAECF CD AD AE BD CF \{351246\} CDAEBF DA AE DB CD CF \{245136\} DAEBCF EA AD DB DC CF FC CD AD AE BD $\{462351\} \quad$ FCDAEB	M1 A1; A1 (3) B1 (1) B1 (1) [5]

edexcel

Question Number	Scheme	Marks
$\begin{array}{ll} \hline \text { Q2 } & \\ & \text { (a) } \end{array}$	$\frac{230}{60}=3.83 \text { so } 4 \text { needed }$	M1 A1 (2)
(b)	Bin 1: 32179 Bin 2: 4512 Bin 3: 2328 Bin 4: 3816 Bin 5: 10	$\begin{align*} & \text { M1 A1 } \\ & \text { A1 } \\ & \text { A1 } \tag{4} \end{align*}$
(c)	$\begin{array}{\|rlll} \text { e.g. } \operatorname{Bin} 1: & 32 & 28 \\ \operatorname{Bin} 2: & 38 & 12 & 10 \\ \operatorname{Bin} 3: & 45 & 9 & \\ \operatorname{Bin} 4: & 23 & 17 & 16 \end{array}$	M1 A1 A1 (3)
		[9]
	Notes: (a) 1M1: Their 230 divided by 60, some evidence of correct method 3.8 enough. 1A1: cso 4. (b) 1M1: Use of first fit. Probably 32, 45 and 17 correctly placed. 1A1: 32, 45, 17, 23, 38 and 28 placed correctly 2A1: 32, 45, 17, 23, 38, 28, 16, 9 placed correctly. 3A1: cao (c) 1M1: Use of full bin - at least one full bin found and 5 numbers placed. 1A1: 2 full bins found $\operatorname{Eg}[32+28$ and $38+12+10] \quad[23+28+9$ and $16+12+32]$ $[32+28$ and $23+16+12+9] \quad[38+12+10$ and $23+28+9]$ 2A1: A 4 bin solution found. Special case for (b) misread using first fit decreasing. Give M1A1 (max) Bin 1: 4512 Bin 2: 3817 Bin 3: 3228 Bin 4: 2316109 M1 for placing 45, 38, 32, 28 and 23 correctly A1 for cao.	

edexcel

Question Number	Scheme	Marks
Q3 (a) (b) (c)	$H-2=M-5=R-4$ change status to give $\mathrm{C}=3 \quad \text { (E unmatched) } \quad \mathrm{H}=2 \quad \mathrm{M}=5 \quad \mathrm{R}=4 \quad \mathrm{~S}=1$ e.g. C is the only person who can do 3 and the only person who can do 6 e.g. $\mathrm{E}-5=\mathrm{M}-2=\mathrm{H}-1=\mathrm{S}-3=\mathrm{C}-6$ change status to give $\mathrm{C}=6 \quad \mathrm{E}=5 \quad \mathrm{H}=1 \quad \mathrm{M}=2 \quad \mathrm{R}=4 \quad \mathrm{~S}=3$ Notes: (a) 1M1: Path from H to 4 1A1: correct path and change status 2A1: CAO must follow from correct path. (b) 1B1: CAO or e.g reference to E 5 M 2 H 1 S (c) 1M1: Path from E to 6 1A1: CAO do not penalise lack of change status a second time. 2A1: CAO must follow from a correct path	M1 A1 A1 (3) B1 (1) M1 A1 A1 (3) [7]

Question Number	Scheme	Marks
Q4	M J E K H \mathbf{B} L P N D \mathbf{B} \boldsymbol{B} M J E K \mathbf{H} L P N D \mathbf{H} \boldsymbol{B} E D \boldsymbol{H} M J K L P N $\mathbf{D} \mathbf{L}$ \mathbf{B} \boldsymbol{D} E \boldsymbol{H} J K \mathbf{L} M \mathbf{P} N (E) K \mathbf{P} \boldsymbol{B} \boldsymbol{D} \boldsymbol{E} \boldsymbol{H} J \boldsymbol{K} \mathbf{L} M \mathbf{N} \boldsymbol{P} $\mathbf{(J)} \mathbf{(J)}$ \boldsymbol{B} \boldsymbol{D} \boldsymbol{E} \boldsymbol{H} \boldsymbol{J} \boldsymbol{K} \mathbf{L} \mathbf{M} \mathbf{N} \mathbf{P} $\mathbf{(M)}$ Sort completed $\begin{aligned} & {\left[\frac{1+10}{2}\right]=6 \quad \text { Katie reject left }} \\ & {\left[\frac{7+10}{2}\right]=9 \quad \text { Natsuko reject right }} \\ & {\left[\frac{7+8}{2}\right]=8 \quad \text { Miri reject right }} \\ & 7=\text { Louis name found } \end{aligned}$ Notes: (a) 1M1: quick sort, pivots, p, identified, two sublists one $<$ p one $>p$. If choosing one pivot only per iteration, M1 only. 1A1: first pass correct, next pivot(s) chosen consistently. 2A1ft: second pass correct, next pivot(s) chosen consistently 3A1ft: third pass correct, next pivot(s) chosen consistently 4A1: cso List re-written or end statement made or each element been chosen as a pivot. (b) 1M1: binary search, choosing pivot rejecting half list. If using unordered list then M0. If choosing J M1 ony 1A1: first two passes correct, condone 'sticky'pivots here, bod. 2A1ft: third pass correct, pivots rejected. 3A1: cso, including success statement. Special case for (b) - If just one letter out of order, award maximum of M1A1A0A0	

edexcel

Question Number	Scheme	Marks
Q5 (a)	$\begin{aligned} & \mathrm{CD}+\mathrm{EG}=45+38=83 \\ & \mathrm{CE}+\mathrm{DG}=39+43=82 \leftarrow \\ & \mathrm{CG}+\mathrm{DE}=65+35=100 \\ & \text { Repeat } \mathrm{CE} \text { and } \mathrm{DG} \\ & \text { Length } 625+82=707(\mathrm{~m}) \end{aligned}$ DE (or 35) is the smallest So finish at C. New route $625+35=660(\mathrm{~m})$ Notes: (a) 1M1: Three pairings of their four odd nodes 1A1: one row correct 2A1: two rows correct 3A1: three rows correct 4A1ft: ft their least, but must be the correct shortest route arcs on network. (condone DG) 5A1ft: 625 + their least = a number. Condone lack of m (b) 1 M 1 : Identifies their shortest from a choice of at least 2 rows. 1A1ft: ft from their least or indicates C. $2 \mathrm{~A} 1 \mathrm{ft}=1 \mathrm{Bft}$: correct for their least. (Indept of M mark)	M1 1A1 2A1 3A1 4A1ft 5A1ft (6) M1 Alft A1ft=1B1 (3) [9]

Question Number	Scheme	Marks
(a) (b)	Route: A E H I Shortest distance from A to G is 28 km Notes: (a) 1M1: Small replacing big in the working values at C or F or G or I 1A1: Everything correct in boxes at A, B, D and F 2A1ft: ft boxes at E and C handled correctly but penalise order of labelling only once 3A1ft: ft boxes at G and H handled correctly but penalise order of labelling only once 4A1ft: ft boxes at I handled correctly but penalise order of labelling only once 5A1: route cao A E H I (b) 1B1ft: ft their final label at G condone lack of km	M1 1A1 2A1ft 3A1ft 4A1ft 5A1 B1ft

edexcel

Question Number	Scheme	Marks
(c)	(Question 7 continued)	

Mark Scheme (Results) J anuary 2010

GCE

Decision Mathematics D1 (6689)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

J anuary 2010
Publications Code UA022719
All the material in this publication is copyright
© Edexcel Ltd 2010

J anuary 2010
 6689 Decision Mathematics D1
 Mark Scheme

Question Number	Scheme										Marks
Q1(b)	Question 1(b) Alternative Solutions										
			Path 1	Path 2			Matc	ing			
					A	B	C	D	E	F	
	1		B-3-C-1-A-2	F-3-B-4-D-5-E-1-C-6	2	4	6	5	1	3	
	2		B-3-C-1-A-2	F-3-B-4-D-5-E-2-A-1-C-6	1	4	6	5	2	3	
	3		B-3-C-1-A-2	F-4-D-5-E-1-C-6	2	3	6	5	1	4	
	4		B-3-C-1-A-2	F-4-D-5-E-2-A-1-C-6	1	3	6	5	2	4	
	5		B-3-C-4-D-5-E-1-A-2	F-3-B-4-C-6	2	4	6	5	1	3	
	6		B-3-C-4-D-5-E-1-A-2	F-4-C-6	2	3	6	5	1	4	
	7		B-3-C-6	F-3-B-4-D-5-E-1-A-2	2	4	6	5	1	3	
	8		B-3-C-6	F-3-B-4-D-5-E-2	1	4	6	5	2	3	
	9		B-3-C-6	F-4-D-5-E-1-A-2	2	3	6	5	1	4	
		0	B-3-C-6	F-4-D-5-E-2	1	3	6	5	2	4	
		1	B-4-D-5-E-2	F-3-C-6	1	4	6	5	2	3	
		2	B-4-D-5-E-2	F-4-B-3-C-6	1	3	6	5	2	4	
		13	B-4-D-5-E-1-A-2	F-3-C-6	2	4	6	5	1	3	
		4	B-4-D-5-E-1-A-2	F-4-B-3-C-6	2	3	6	5	1	4	
		5	F-3-C-1-A-2	B-3-F-4-D-5-E-1-C-6	2	3	6	5	1	4	
		6	F-3-C-1-A-2	B-3-F-4-D-5-E-2-A-1-C-6	1	3	6	5	2	4	
		7	F-3-C-1-A-2	B-4-D-5-E-1-C-6	2	4	6	5	1	3	
		8	F-3-C-1-A-2	B-4-D-5-E-2-A-1-C-6	1	4	6	5	2	3	
		9	F-3-C-4-D-5-E-1-A-2	B-3-F-4-C-6	2	3	6	5	1	4	
		20	F-3-C-4-D-5-E-1-A-2	B-4-C-6	2	4	6	5	1	3	
		21	F-3-C-6	B-3-F-4-D-5-E-1-A-2	2	3	6	5	1	4	
		22	F-3-C-6	B-3-F-4-D-5-E-2	1	3	6	5	2	4	
		23	F-3-C-6	B-4-D-5-E-1-A-2	2	4	6	5	1	3	
		24	F-3-C-6	B-4-D-5-E-2	1	4	6	5	2	3	
	25	25	F-4-D-5-E-2	B-3-C-6	1	3	6	5	2	4	
		26	F-4-D-5-E-2	B-4-F-3-C-6	1	4	6	5	2	3	
		27	F-4-D-5-E-1-A-2	B-3-C-6	2	3	6	5	1	4	
		28	F-4-D-5-E-1-A-2	B-4-F-3-C-6	2	4	6	5	1	3	
	Notes (a) B1 cao preferably just 4 lines, but accept if unambiguous. (b) M1 attempt at a path from B or F to 2 or 6 A1 correct path - including change status M1 attempt at a second path from F or B to 6 or 2 A1 correct path - including change status (do not penalise change status twice) A1 correct matching; must follow from 2 correct paths										

Question Number	Scheme	Marks
Q2(a)	(i) All pairs of vertices connected by a path, but not describing complete graph. (ii) No cycles (iii) All nodes connected (accept definition of minimum spanning tree)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ (3)
Q2(b)	Kruskal's (algorithm)	B1
Q2(c)(i)	L-O 56 Using Prim. first 2 correct L-C 60 C-N 62 Next 2 O-S 63 Finish S-P 43 Total	M1 A1 A1 A1 =B1
Q2(c)(ii)	Tree correct	B1 (5) [9]

Q2(c)

Accept weights as indicating arcs.

Misreads - award M1 AO AO for these:

- Vertices, not edges given LOCNSPY
- Numbers across top, edges either incorrect or not given: 3142657.

Also accept these, misreading And not starting at L - again M1A0A0

Started at	Minimum arcs	nodes	Numbers
C	CL,LO,CN,.....	CLONSPY	1243657
N	NC,CL,LO,OS,SP,CY	NCLOSPY	2314657
O	OL,LC,CN,OS,....	OLCNSPY	3241657
P	PS,SO,OL,LC,CN.CY	PSOLCNY	5463127
S	SP.SO,...	SPOLCNY	5463217
Y	YC,CL,LO,CN,..	YCLONSP	2354761

Clear method to include at least 1 update
(look at E, F, G or H) M1

BCDE correct

FGH correct
Alf
Route ADEGH
Total time 36 Minutes
A1
Alft (5)

Notes for Q4(a)

1M1 Pivot, p, chosen. List sorted, >p, p. $<$ p or $<$ p, $\mathrm{p},>$ p. If only choosing 1 pivot per iteration M1 only
1A1 $\quad 1^{\text {st }}$ pass correct and chosen next two pivots correctly for sublists >1
2A1ft $2^{\text {nd }}$ pass correct and chosen next two pivots correctly for sublists >1
$3 \mathrm{~A} 1 \mathrm{ft} \quad 3^{\text {rd }}$ pass correct and next pivot for sublist >1 chosen correctly.
4A1 cso.

Misread in part (a)

- If they have misread a number at the start of part (a), so genuinely miscopied and got for example 0.1 instead of 1.0 then mark the whole question as a misread - removing the last two A or B marks earned. This gives a maximum total of 9 .
- If they misread their own numbers during the course of part (a) then count it as an error in part (a) but mark parts (b) and (c) as a misread. So they would lose marks in (a) for the error and then the last two A or B marks earned in (b) and (c) - giving a maximum of 8 or maybe 7 marks depending on how many marks they lose in (a).

The most popular misread is the one listed above - where 1.0 has changed to 0.1 giving
$\begin{array}{lllllllll}4.0 & 4.0 & 3.2 & 2.6 & 2.5 & 0.6 & 0.5 & 0.4 & 0.3 \\ \mathbf{0 . 1} & \text { at the end of (a) for this one (b) and (c) are: }\end{array}$
(b) Length 1: 4

Length 2: 4
Length 3: 3.20 .60 .1
Length 4: 2.60 .50 .40 .3
Length 5: 2.5
(c) $\quad 18.2 / 4=4.55$ so 5 bins, or total is 18.2 or 1.8 'spare'

Yes answer in (b) uses the minimum number of bins.

Alternate solutions for Question 4
Choosing middle left

0.6	4.0	2.5	3.2	$\underline{0.5}$	2.6	0.4	0.3	4.0	1.0	(pivot 0.5)
0.6	4.0	2.5	$\underline{3.2}$	2.6	4.0	1.0	$\mathbf{0 . 5}$	$\underline{0.4}$	0.3	(pivots 3.2, 0.4)
$\underline{4.0}$	4.0	$\mathbf{3 . 2}$	0.6	$\underline{2.5}$	2.6	1.0	$\mathbf{0 . 5}$	$\mathbf{0 . 4}$	$\underline{0.3}$	(pivots 4.0, 2.5)
$\mathbf{4 . 0}$	$\underline{4.0}$	$\mathbf{3 . 2}$	$\underline{2.6}$	$\mathbf{2 . 5}$	$\underline{0.6}$	1.0	$\mathbf{0 . 5}$	$\mathbf{0 . 4}$	$\mathbf{0 . 3}$	(pivots 0.6)
$\mathbf{4 . 0}$	$\mathbf{4 . 0}$	$\mathbf{3 . 2}$	$\mathbf{2 . 6}$	$\mathbf{2 . 5}$	$\underline{\underline{1.0}}$	$\mathbf{0 . 6}$	$\mathbf{0 . 5}$	$\mathbf{0 . 4}$	$\mathbf{0 . 3}$	
$\mathbf{4 . 0}$	$\mathbf{4 . 0}$	$\mathbf{3 . 2}$	$\mathbf{2 . 6}$	$\mathbf{2 . 5}$	$\mathbf{1 . 0}$	$\mathbf{0 . 6}$	$\mathbf{0 . 5}$	$\mathbf{0 . 4}$	$\mathbf{0 . 3}$	

Choosing first

$\underline{0.6}$	4.0	2.5	3.2	0.5	2.6	0.4	0.3	4.0	1.0	(pivot 0.6)
$\underline{4.0}$	2.5	3.2	2.6	4.0	1.0	$\mathbf{0 . 6}$	$\underline{0.5}$	0.4	0.3	(pivots 4.0, 0.5)
$\mathbf{4 . 0}$	$\underline{2.5}$	3.2	2.6	4.0	1.0	$\mathbf{0 . 6}$	$\mathbf{0 . 5}$	$\underline{0.4}$	0.3	(pivots 2.5, 0.4)
$\mathbf{4 . 0}$	$\underline{3.2}$	2.6	4.0	$\mathbf{2 . 5}$	$\underline{1.0}$	$\mathbf{0 . 6}$	$\mathbf{0 . 5}$	$\mathbf{0 . 4}$	$\underline{0.3}$	(pivots 3.2)
$\mathbf{4 . 0}$	$\underline{4.0}$	$\mathbf{3 . 2}$	$\underline{2.6}$	$\mathbf{2 . 5}$	$\mathbf{1 . 0}$	$\mathbf{0 . 6}$	$\mathbf{0 . 5}$	$\mathbf{0 . 4}$	$\mathbf{0 . 3}$	
$\mathbf{4 . 0}$	$\underline{\mathbf{4 . 0}}$	$\mathbf{3 . 2}$	$\mathbf{2 . 6}$	$\mathbf{2 . 5}$	$\mathbf{1 . 0}$	$\mathbf{0 . 6}$	$\mathbf{0 . 5}$	$\mathbf{0 . 4}$	$\mathbf{0 . 3}$	

OR (alternate choosing first)										
0.6	4.0	2.5	3.2	0.5	2.6	0.4	0.3	4.0	1.0	(pivot 0.6)
4.0	2.5	3.2	2.6	4.0	1.0	0.6	0.5	0.4	0.3	(pivots 4.0, 0.5)
4.0	4.0	2.5	3.2	2.6	1.0	0.6	0.5	0.4	0.3	(pivots 2.5, 0.4)
4.0	4.0	3.2	2.6	2.5	1.0	0.6	0.5	0.4	0.3	(pivots 3.2)
4.0	4.0	3.2	2.6	2.5	1.0	0.6	0.5	0.4	0.3	
4.0	4.0	3.2	2.6	2.5	1.0	0.6	0.5	0.4	0.3	

Question 4 sorting into ASCENDING order (full marks if then reversed, otherwise MISREAD)

Middle left										
0.6	4.0	2.5	3.2	0.5	2.6	0.4	0.3	4.0	1.0	(pivot 0.5)
0.4	0.3	0.5	0.6	4.0	2.5	3.2	2.6	4.0	1.0	(pivot 0.4, 3.2)
0.3	0.4	0.5	0.6	$\underline{2.5}$	2.6	1.0	3.2	4.0	4.0	(pivot 2.5, 4.0)
0.3	0.4	0.5	0.6	1.0	2.5	2.6	3.2	4.0	4.0	(pivot 0.6)
0.3	0.4	0.5	0.6	1.0	2.5	2.6	3.2	4.0	4.0	
Middle right										
0.6	4.0	2.5	3.2	0.5	2.6	0.4	0.3	4.0	1.0	(pivot 2.6)
0.6	2.5	0.5	0.4	0.3	1.0	2.6	4.0	3.2	4.0	(pivot 0.4, 3.2)
0.3	0.4	0.6	2.5	0.5	1.0	2.6	3.2	4.0	4.0	(pivot 0.5, 4.0)
0.3	0.4	0.5	0.6	$\underline{2.5}$	1.0	2.6	3.2	4.0	4.0	(pivot 2.5)
0.3	0.4	0.5	0.6	1.0	2.5	2.6	3.2	4.0	4.0	(pivot 1.0)
First (1)										
0.6	4.0	2.5	3.2	0.5	2.6	0.4	0.3	4.0	1.0	(pivot 0.6)
0.5	0.4	0.3	0.6	4.0	2.5	3.2	2.6	4.0	1.0	(pivot 0.5, 4.0)
0.4	0.3	0.5	0.6	$\underline{2.5}$	3.2	2.6	1.0	4.0	4.0	(pivots 0.4, 2.5)
0.3	0.4	0.5	0.6	1.0	2.5	3.2	2.6	4.0	4.0	(pivots 3.2)
0.3	0.4	0.5	0.6	1.0	2.5	2.6	3.2	4.0	4.0	
First (2)										
0.6	4.0	2.5	3.2	0.5	2.6	0.4	0.3	4.0	1.0	(pivot 0.6)
0.5	0.4	0.3	0.6	4.0	2.5	3.2	2.6	4.0	1.0	(pivot 0.5, 4.0)
0.4	0.3	0.5	0.6	$\underline{2.5}$	3.2	2.6	1.0	4.0	4.0	(pivots 0.4, 2.5)
0.3	0.4	0.5	0.6	1.0	2.5	3.2	2.6	4.0	4.0	(pivots 3.2)
0.3	0.4	0.5	0.6	1.0	2.5	2.6	3.2	4.0	4.0	

Question Number	Scheme	Marks
Q7(a)	$x+2 y \leq 12 \quad(150 x+300 y \leq 1800)$	M1A1 (2)
Q7(b)	$\begin{align*} & 0.9 x+1.2 y \leq 9 \\ & \rightarrow 3 x+4 y \leq 30 \tag{*} \end{align*}$	M1 A1 cso (2)
Q7(c)	(You need to buy) at least 2 large cupboards.	B1 (1)
Q7(d)	Capacity C and 140\%C So total is $C x+\frac{140}{100} C y$ Simplify to $7 y+5 x$ (*)	M1 Alcso (2)
Q7(e)	 Graph: $\begin{aligned} & y \geq 2 \\ & 0.9 x+1.2 y \leq 12 \quad(3 x+4 y \leq 30) \\ & x+2 y \leq 12 \quad(150 x+300 y \leq 1800) \end{aligned}$ Lines labelled \& drawn with a ruler Shading, Region identified	B1 B1 B1 B1 B1, B1 (6)
Q7(f)	Consider points and value of $5 x+7 y$: Or draw a clear profit line $(7,2) \rightarrow 49$ or $\left(7 \frac{1}{3}, 2\right) \quad \rightarrow \quad 50 \frac{2}{3}$, or $(7.3,2) \rightarrow 50.5$ $(6,3) \rightarrow 51$ $(0,6) \rightarrow 42$ $(0,2) \quad \rightarrow 14$ Best option is to buy 6 standard cupboards and 3 large cupboards.	M1A1 A1 A1 (4) [17]

Question 7 notes

(a) 1 M 1 - correct terms, accept = here, accept swapped coefficients.

1A1 - cao does not need to be simplified.
(b) $1 \mathrm{M} 1-$ correct terms, must deal with cm / m correctly, accept $=$ here.

1A1 - cso answer given.
(c) 1B1 - cao 'at least' and ' 2 ' and 'large'.
(d) $1 \mathrm{M} 1-1.4$ ' or ' $5 \times 40 \%$ 'maybe ' $5+2$ ' seen, they must be seen to engage with 140% in some way.

1A1 - cso answer given.

Lines should be within 1 small square of correct point at axes.

(e) $1 \mathrm{~B} 1-$ correctly drawing $\mathrm{y}=2$.
$2 \mathrm{~B} 1-$ correctly drawing $3 x+4 y=30[0.9 x+1.2 y=12]$
$3 B 1-$ correctly drawing $x+2 y=12[150 x+300 y=1800]$, ft only if swapped coefficients in (a) $(6,0)$

These next 3 marks are only available for candidates who have drawn at least 2 lines, including at least one 'diagonal' line with negative gradient.

4B1 - Ruler used. At least 2 lines labelled including one 'diagonal' line.
5B1 - Shading, or R correct, b.o.d. on their lines.
6B1 - all lines and R correct.
(f) 1M1 At least 2 points tested or objective line drawn with correct m or $1 / \mathrm{m}$, minimum intercepts 3.5 and
2.5.

1A1-2 points correctly tested or objective line correct.
2A1-3 points correctly tested or objective line correct and distinct/labelled.
3A1 - 6 standard and 3 large, accept $(6,3)$ if very clearly selected in some way.

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481

Email publications@linneydirect.com
Order Code UA022719 J anuary 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/ quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results)

Summer 2010

GCE

GCE Decision Mathematics D1 (6689/ 01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Summer 2010
Publications Code UA023711
All the material in this publication is copyright
© Edexcel Ltd 2010

Summer 2010
Decision Mathematics D1 6689
Mark Scheme

Q1 Alternative solutions
Middle right

H	V	L	A	N	J	S	T	P	(N)	M1
H	L	A	J	N	V	S	T	P	(A T)	A1
A	H	L	J	N	S	P	T	V	(L)	A1ft
A	H	J	L	N	P	5	T	V	(J)	
A	H	J	L	N	P	S	T	V		A1 cso

Middle left

H	V	L	A	N	J	S	T	P	(N)	M1
H	L	A	J	N	V	S	T	P	(L S)	A1
H	A	J	L	N	P	S	V	T	(A V)	A1ft
A	H	J	L	N	P	S	T	V	(H)	
A	H	J	L	N	P	S	T	V		11 cso

First

H	V	L	A	N	J	S	T	P	(H)	M1
A	H	V	L	N	J	S	T	P	(V)	A1
A	H	L	N	J	S	T	P	V	(L)	
A	H	J	L	N	S	T	P	V	(N)	A1f
A	H	J	L	N	S	T	P	V	(S)	
A	H	J	L	N	P	S	T	V		A1 cso

edexcel

edexcel

Question Number	Scheme	Marks
Q3 (a)	e.g. total weight is 239 , lower bound is $\frac{239}{60}=3.98$ so 4 bins.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
(b)	$\operatorname{Bin} 1: 41$ $\operatorname{Bin} 4: 36$ $\operatorname{Bin} 2: 28+31$ $\operatorname{Bin} 5: 32$ $\operatorname{Bin} 3: 42$ $\operatorname{Bin} 6: 29$	$\begin{array}{ll} \text { M1 } & \text { A1 } \\ \text { A1 } & \\ & 3 \end{array}$
(c)	Full Bins : $28+32 \quad 31+29$ The other 3 items $(42,41,36)$ require 3 separate bins	M1 A1 2
(d)	There are 5 items over 30 . No two of these 5 can be paired in a bin, so at least 5 bins will be required.	$\mathrm{B} 2,1,0$ 2
	Notes: (a) 1M1: Any correct statement, must involve calculation 1A1: cao (accept 4 for both marks) (b) 1M1: Bins 1 and 2 correct and at least 6 values put in bins 1A1: Bins 1,2,3 and 4 correct. 2A1: All correct (c) 1M1: Attempt to find two full bins and allocate at least 6 values 1A1: cao (d) 1B1: Correct argument may be imprecise or muddled (bod gets B1) 2B1: A good, clear, correct argument.(They have answered the question 'why?') Misread in (b) First Fit Decreasing Bin 1: $42 \quad \operatorname{Bin} 2: 41 \quad \operatorname{Bin} 3: 36 \quad \operatorname{Bin} 4: 3228$ Bin 5: 3129 (Remove up to two A marks if earned - so M1 max in (b) if first 4 bins correct.)	

edexcel

edexcel

Question Number	Scheme	Marks
Q5 (a)	e.g. $G-3=E-2=A-4=S-6$ Change status $G=3-E=2-A=4-S=6$ Improved matching $A=4$ (C unmatched) $E=2 \quad G=3 \quad J=5 \quad S=6$	M1 A1 A1 3
(b)	e.g. Both C and J can only be matched to 5 Both 1 and 6 can only be done by S	$\text { B2, 1, } 0_{2}$
(c)	$C-5=\mathrm{J}-4=\mathrm{A}-2=\mathrm{E}-6=\mathrm{S}-1$ Change status $C=5-J=4-A=2-E=6-S=1$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	Complete matching $A=2 \quad C=5 \quad E=6 \quad G=3 \quad J=4 \quad S=1$	A1
	Notes: (a) 1M1: Path from G to 6 or 1 1A1: CAO including change status (stated or shown), chosen path clear. 2A1: CAO must ft from stated path, diagram ok (b) 1B1: Correct answer, may be imprecise or muddled (bod gets B1) all relevant nodes should be referred to and must be correct, but condone one (genuine) slip. 2B1: Good, clear, correct answer. (c) 1 M 1 : Path from C to 1 or 6 [whichever they didn't use before.] 1A1: CAO including change status (stated or shown), chosen path clear. (Don't penalise change status twice.) 2A1: CAO must ft from stated path, diagram ok Alt (a) $\mathrm{G}-3=\mathrm{E}-2=\mathrm{A}-4=\mathrm{S}-1 \quad$ c.s. $\mathrm{G}=3-\mathrm{E}=2-\mathrm{A}=4-\mathrm{S}=1$ $A=4,(C$ unmatched $), E=2, G=3, J=5, S=1$ $\begin{aligned} & \text { (c) } C-5=J-4=A-2=E-6 \text { c.s. } C=5-J=4-A=2-E=6 \\ & A=2, C=5, E=6, G=3, J=4, S=1 \end{aligned}$	

edexcel

Question Number	Scheme	Marks
Q6 ${ }^{(a)}$	Route: SBEFHT Time: 87 minutes Accept demonstration of relevant subtractions, or general explanation. Route: EFHT Notes: (a) 1M1: Smaller number replacing larger number in the working values at C or D or G or H or T. (generous - give bod) 1A1: All values in boxes $\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{E}$ and F correct 2A1ft: All values in boxes C and D (ft) correct. Penalise order of labelling errors just once. 3A1: All values in boxes G, H and T correct 1B1: CAO (not ft) 2B1ft: Follow through from their T value, condone lack of units here. (b) 1B1ft: Partially complete account, maybe muddled, bod gets B1 2B1ft: Complete, clear account. (c) 1B1: CAO	M1 A1 A1ft A1 B1 B1ft B2ft,1ft, 0 2 B1 1 Total 9

edexcel

Notes:

(a) 1B1: CAO
(b) $1 \mathrm{~B} 1: 3 x=2 y$ passing through 1 small square of $(0,0)$ and $(12,18)$, but must reach $\mathrm{x}=15$
$2 \mathrm{~B} 1: 5 x+4 y=80$ passing through 1 small square of $(0,20)$ and $(16,0)$ (extended if necessary) but must reach $\mathrm{y}=6$
3B1: R CAO (condoning slight line inaccuracy as above.)
(c) 1B1: Accept expression and swapped coefficients. Accept $5 x+8 y$ for 1 mark 2B1: CAO (expression still ok here)
(d) 1M1: Profit line [gradient accept reciprocal, minimum length line passes through $(0,2.5)(4,0)]$ OR testing 2 points in their FR near two different vertices.
1A1: Correct profit line OR 2 points correctly tested in correct FR (my points)

$$
\begin{array}{r}
\left(7 \frac{3}{11}, 10 \frac{10}{11}\right)=12363 \frac{7}{11} \\
\qquad \begin{array}{l}
\text { or } \quad(7,11)=12300 \\
\\
(8,10)=12000 \\
(8,11)=12800
\end{array} \\
\left(11 \frac{1}{5}, 6\right)=10400 \\
(15,6)=12300 \\
\left(15,22 \frac{1}{2}\right)=25500 \\
(11,6)=10300 \\
(15,7)=11100
\end{array}
$$

2M1: Seeking integer solution in correct FR (so therefore no $\mathrm{y}=6$ points)
1B1: $(11,7)$ CAO
2B1: £11 100 CAO

edexcel

Notes for Q8

(a) 1M1: Top boxes completed generally increasing left to right.

1A1: CAO.
2M1: Bottom boxes completed generally decreasing right to left.
2A1: CAO.
(b) 1B1: Critical activities cao.
(c) 1M1: At least 10 activities placed, at least five floats. Scheduling diagram gets M0.

1A1: my critical activities correct.
2A1: condone one error on my non-critical activities.
3A1: my non-critical activities correct.
(d) 1B1: A correct statement, details of either time ($7<$ time $<9,8<$ day <10), or activities, bod gets B 1 . Allow 1 B mark (only) on ft from their 12 activity, 7 float diagram.
2B1: A correct, complete full statement details of time and activities.

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA023711 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) J anuary 2011

GCE

GCE Decision Mathematics D1 (6689/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

J anuary 2011
Publications Code UA026247
All the material in this publication is copyright
© Edexcel Ltd 2011

edexcel 흧

J anuary 2011
Decision Mathematics D1 6689
Mark Scheme

Question Number	Scheme	Marks
(b)	Shortest route: A B C E G F H	B1
		(1)
(c)	Shortest route: H F G E C	B1ft
	Length of shortest route: $21-7=14$ miles	B1ft
		(2) [8]
	Notes	
(a)	1M1: Smaller number replacing larger number in the working values at C or D or G or E or F or H . (generous - give bod) 1A1: All values in boxes A, B and C correct. (Condone missing wv at A) (Allow order of labelling starting at 0) 2A1ft: All values in boxes D, E and G (ft) correct . Penalise order of labelling errors just once, G must be labelled before F. 3A1: All values in boxes F and H correct 4A1ft: Follow through from their H value, condone lack of units here.	
(b)	1B1: CAO (either way round)	
(c)	1B1ft: only ft if their shortest route goes through C , in which case accept their route reversed up to C (either way round) 2B1ft: only ft if their shortest route goes through C , in which case accept their route length (or final value at H) - 7 .	

Question Number	Scheme									Marks
	Notes									
(a)	$\begin{aligned} & \text { 1M1 = 1B1: Cao } 4 \\ & 1 \mathrm{~A} 1=2 \mathrm{~B} 1: \text { either }(173 \pm 20) \div 50 \text { or } 3<\text { answer }<4 \text { seen. } \end{aligned}$									
(b)	1M1: First four items placed correctly and at least 6 values put in bins 1A1: Bin 1 correct (condone cumulative totals) 2A1: All correct (condone cumulative totals)									
(c)	1M1: Bubble sort, one pass complete end term 35 or 10, consistent direction. 1A1: First two passes correct 2A1ft: Next two passes correct 3A1: cso + 'final' or re-listing etc.									
(d)	1M1: Bin 3 correct and at least 6 values put in bins 1A1: two bins correct (condone cumulative totals) 2A1: cso (condone cumulative totals)									
Misread for Q2(c)	Sorting into ascending order If list reversed into descending order at end, allow full marks									
	(i) Left to right									
	23	29	11	34	10	14	35	17	A1A1ft	
	23	11	29	10	14	34	17	35		
	11	23	10	14	29	17	34	35		
	11	10	14	23	17	29	34	35		
	10	11	14	17	23	29	34	35		
	List in order									
	(ii) right to left									
	23	29	11	34	10	14	35	17	A1	
	10	23	29	11	34	14	17	35		
	10	11	23	29	14	34	17	35		
	10	11	14	23	29	17	34	35		
	10	11	14	17	23	29	34	35		
	List in order									
	Numbers changing during the course of the sort - If the number change does not alter the sort (e.g. 23 becomes 25) remove final A only. If persists in (d) but does not affect answer similarly remove final A only in (d). - If the number alters the sort (e.g 23 becomes 32) mark as a misread in (c) and if persists in (d) mark (c) and (d) together as a misread - so just take 2 marks off in total for these two sections.									

Question Number	Scheme	Marks
3. (a)	$\begin{aligned} & \text { CI CD (not DI) EF FI (not EI not DE) }\left\{\begin{array}{c} \mathrm{BC} \\ \mathrm{HI} \end{array}\right\} \text { (not BI) GF } \\ & \text { (not GI not HG) AB } \end{aligned}$	M1 A1 A1 (3)
(b)	AB BC CI CD FI EF IH FG	M1 A1 A1 (3)
(c) (d)	Weight: 270 Start off the tree with DI and HG and then apply Kruskal's algorithm	B1 B1 (2) B2,1, 0 (2) [10]
	Notes	
(a)	1M1: Kruskal's algorithm - first 4 arcs selected chosen correctly. 1A1: All eight non-rejected arcs chosen correctly.(Working seen in (a)) 2A1: All rejections correct and in correct order and at correct time.	
(b)	1M1: Prim's algorithm - first four arcs chosen correctly, in order, or first five nodes chosen correctly, in order. \{A, B,C,I, D\} (arcs not arc lengths) 1A1: First six arcs chosen correctly; all 9 nodes chosen correctly, in order.\{A,B,C,I,D,F,E,H,G\}[1 2357698 4] 2A1: cso	
(c)	1B1: cao (condone lack of numbers) 2B1: 270 cao	
(d)	1B1: Kruskal's algorithm + some argument 2B1: Kruskal's algorithm + start with the two arcs. (o.e)	

Question Number	Scheme	Marks
5. (a)	$\begin{aligned} & \mathrm{AD}+\mathrm{FI}=4.5+5.3=9.8 \\ & \mathrm{AF}+\mathrm{DI}=5.8+3.9=9.7 \text { smallest } \\ & \mathrm{AI}+\mathrm{DF}=5.9+5.1=11.0 \end{aligned}$ e.g. ABDGIGDEIHFEACFEA	M1 A1 A1 A1 A1 (5)
(b)	Roads AE, EF (or AEF), DG and GI (or DGI) should be repeated. Length is $31.6+9.7=41.3 \mathrm{~km}$	B1 M1A1ft
(c)	We now only have to repeat one pair of odd vertices, one of which can not be D. $(\mathrm{FI}=5.3, \mathrm{AF}=5.8$ and $\mathrm{AI}=5.9)$ FI gives the smallest of the three so choose to repeat FI (FHI) The machine should be collected from A.	M1 A1 DA1 (3) [11]
	Notes	
(a)	1M1: Three pairings of their four odd nodes 1A1: one row correct 2A1: two rows correct 3A1: all correct 4A1: Any correct route (17 nodes)	
(b)	1B1: correct arcs identified 1M1: $31.6+\mathrm{ft}$ their least, from a choice of at least two. 1A1: ft has correctly their plausible least (from a choice of at least two) to 31.6.	
(c)	1M1: Identifies need to repeat one pairing, not including D (maybe implicit) or listing of potential repeats. 1A1: Identifies FI as least. 2DA1: dependent on their identifying FI as repeat	

Question Number	Scheme	Marks
6.8	$4 y \geq x \quad \text { o.e. }$ $2 y \leq x+30 \text { o.e }$	
(b)	$x+y=30$ and $5 x+8 y=400$ added to the graph shading correct R correct	$\begin{aligned} & \text { B1, B1 } \\ & \text { B1ft } \\ & \text { B1 } \end{aligned}$
(c)	Profit line attempted Correct profit line $(10,20)$	M1 A1 B1 (3) [11]

Question Number	Scheme	Marks
(a)	1B1: ratio of coefficients correct (i.e. equation of line correct) 2B1: inequality correct way round.($a y \geq b x$ o.e.) 3B1: ratio of coefficients correct (i.e equation of line correct) 4B1: inequality correct way round.	
(b)	1B1: $x+y=30$ drawn cao 2B1: $5 x+8 y=400$ drawn cao 3B1ft: shading correct or implied from lines with negative gradient. 4B1: cao	
(c)1M1: Profit line - intersecting both axes. Minimum (2,0) to (0,3). Accept reciprocal gradient here. 1A1: a correct line 2A1=1B1: cao (e.g not '10x + 20y')		

Question Number	Scheme	Marks
7.		$\mathrm{B} 3,2,1,0$ (3)
	Activity ${ }^{\text {Im }}$ Immediately preceding activities	
	G B, C	
	H E, F	
	I \quad D, E, F	
	J G, H	
	K G, H, I	
	L G, H, I	
(b)	Dummy from 6 to 7 needed because K and L depend on $G H$ and I, but J depends on G and H only. Dummy from 8 to 9 needed because no two activities may share both the same start event number and the same finish event number.	B3,2,1,0
(c)		M1 A1 M1 A1 (4)
(d)	Critical activities: A C $\left\{\begin{array}{c}\text { F H } \\ G\end{array}\right\}$ J	$\mathrm{B} 2,1,0$
(e)	Total float on activity K=21-14-5 = 2	M1 A1ft (2)
(f)	Lower bound is $\frac{54}{21}=2.57=3$	B1 B1ft

Question Number	Scheme	Marks
(a)	1B1: Any two rows correct 2B1: Any 4 rows correct 3B1: all correct	
(b)	1B1: first dummy (precedence) explained, maybe confused, be generous, give bod. 2B1: first dummy clearly explained - all relevant activities referred to. Must refer to K and/or L; H and/or G; I and J 3B1: second dummy (uniqueness) explained, maybe confused, be generous, give bod.	
(c)	1M1: All top boxes completed generally increasing left to right.(Condone one rogue) 1A1: cao. 2M1: All bottom boxes completed generally decreasing right to left. (Condone one rogue) 2A1: cao.	
(d)	1B1: Critical activities correct condone one omission or extra. SC allow ACGJ for B1 only 2B1: Critical activites cao	
(e)	1M1ft: Correct calculation seen - all three numbers at least once. 1A1ft: Float correct >0	
(f)	1M1 = 1B: 3 1A1ft= 2B1ft:Correct calculation seen or ' 2< answer < 3	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481

Email publications@linneydirect.com
Order Code UA026247 J anuary 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results)
June 2011

GCE Decision D1 (6689) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA027669
All the material in this publication is copyright
© Edexcel Ltd 2011
advancing learning, changing lives

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol wifl be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

J une 2011 Decision Mathematics D1 6689 Mark Scheme

Question Number	Scheme	Marks
1. (a)	The list is not in alphabetical order.	$\begin{array}{\|l\|l\|} \hline \text { B1 } \\ & \\ \hline \end{array}$
(b)		M1 A1 A1 $\mathrm{A} 1=\mathrm{B} 1$ (4)
(c)	Pivot $1=\left[\frac{1+10}{2}\right]=6$ Jenny reject 1-6 Pivot $2=\left[\frac{7+10}{2}\right]=9$ Richard reject 9-10 Pivot $3=\left[\frac{7+8}{2}\right]=8$ Merry reject 8 Pivot $4=7$ Kim - name found	M1 A1 A1ft A1 (4) 9
$\begin{array}{r} \text { (a) B1 } \\ \text { (b) M1 } \\ \text { 1A1 } \\ 2 \mathrm{A1} \\ 3 \mathrm{~A} 1=2 \mathrm{~B} 1 \\ \text { (c) M1 } \\ \\ 1 \mathrm{A1} \\ \text { 2A1 } \\ \\ 3 \mathrm{A1} \end{array}$	Notes: CAO - phonetically close Quick sort - pivots, p, selected and first pass gives <p, p, >p. First two passes correct, pivots chosen consistently for third pass CAO Sort completed correctly 'Stop’ + plus correct name for their sort - phonetically close Using their 'sorted list' + choosing middle right pivots+ discarding/retaining half the list. It their list is not in full alphabetical order M1 only. First pass correct ie $6^{\text {th }}$ item for a correct list (no sticky pivots) Second and third passes correct ie $9^{\text {th }}$ and $8^{\text {th }}$ items from a correct list (no sticky pivots) CSO search complete + 'found'	

:
advancing learning, changing lives

Question Number	Scheme	Marks
2. (a)(i) (a)(ii)	A tree is a connected graph with no cycles/circuit A minimum spanning tree is a tree that contains all vertices and the total length of its arcs (weight of tree) is as small as possible.	B1 B1 B1 (3)
(b)	$A B, D E, B C ;\left\{\begin{array}{c}\text { reject } A C \\ B D\end{array}\right\}$ reject $B E$, reject CE, use either EF or CF	$\begin{aligned} & \text { M1; A1 } \\ & \text { A1 } \end{aligned}$ (3)
(c)		B1 (1)
(d)	No, there are two solutions since either EF or CF should be used.	B1 (1) 8
(a)1B1 2B1 3B1 (b)M1 1A1 2A1 (c)B1 (d)B1	Notes Connected + no cycles Contains all vertices Total length of arcs used minimised or minimum weight. (Not shortest/smallest etc.) First four arcs selected correctly in correct order. Arcs selected correctly at correct time Rejections correct and at correct time CAO CAO - mark explanation must specify two arcs of 18 or two 18 's or ref to EF and CF	

Question Number	Scheme	Marks
4. (a)	$\begin{align*} & \text { [Given } \mathrm{A}-3=\mathrm{R}-4=\mathrm{C}-5 \text {] } \\ & \mathrm{A}-1=\mathrm{H}-2 \\ & \mathrm{~A}-1=\mathrm{H}-3=\mathrm{R}-4=\mathrm{C}-5 \tag{3} \end{align*}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 } \end{aligned}$
(b)	$\mathrm{A}=3, \mathrm{C}=5, \mathrm{H}=1,(\mathrm{~J}$ unmatched $), \mathrm{R}=4$	B1 (1)
(c)	Alternating path : $\mathrm{J}-4=\mathrm{R}-3=\mathrm{A}-1=\mathrm{H}-2$ Change status: $\mathrm{J}=4-\mathrm{R}=3-\mathrm{A}=1-\mathrm{H}=2$ $\mathrm{A}=1, \mathrm{C}=5, \mathrm{H}=2, \mathrm{~J}=4, \mathrm{R}=3$	M1 A1 A1 (3) 7
$\begin{array}{r} \text { (a)M1 } \\ \text { 1A1 } \\ \text { 2A1 } \\ \text { (b)B1 } \\ \text { (c)M1 } \\ \text { 1A1 } \\ \text { 2A1 } \end{array}$	Notes Path from A to 2 or 5 - or vice versa One correct path selected OR tree showing the missing two paths only. Both correct paths listed separately CAO Path from J to 2 - or vice versa Correct path including change status CAO must follow through from stated path.	

Question Number	Scheme	Marks
5. (a)	$\begin{aligned} & \mathrm{AC}+\mathrm{DF}=9+13=22 \leftarrow \\ & \mathrm{AD}+\mathrm{CF}=16+8=24 \\ & \mathrm{AF}+\mathrm{CD}=17+7=24 \end{aligned}$ Repeat arcs AC, DG and GF	M1 A1 A1 A1 A1ft (5)
(b)	E.g. ADCACGDGFGECBEFBA Length of route $=98+22=120(\mathrm{~km})$	B1 B1ft (2)
(c)	CF (8) is the shortest link between 2 odd nodes excluding D Repeat CF (8) since this is the shortest path excluding D. We finish at A Length of route $=98+8=106(\mathrm{~km})$	M1 A1ft A1ft (3) 10
(a)M1 1A1 2A1 3A1 4A1ft (b)1B1 2B1ft (c)M1 1A1ft 2A1ft	Notes Three pairings of their four odd nodes One row correct including pairing and total Two rows correct including pairing and total Three rows correct including pairing and total Their smallest repeated arcs stated accept DGF or arcs clear from selected row. Correct route any start point, 17 nodes, AC, DG and GF repeated CAO 98 + their least out of a choice of at least 2 . Attempting just one repeated path excluding D; accept AC, AF and CF listed A and their least repeat [should be CF (CEF)] clearly stating this as least $98+$ their least from their working in (a)	

Question Number	Scheme	Marks
6. (a)	ACDFEGH Length 71 (km)	M1 A1 (ABCD) A1ft (EF) A1ft (GH) A1 A1ft
(b)	E.g. $71-12=59 \mathrm{GH} \quad 49-10=39 \mathrm{FE} \quad 24-13=11 \mathrm{CD}$ $59-10=49$ EG $39-15=24 \mathrm{DF} \quad 11-11=0$ AC Or Trace back from H including arc XY if (Y already lies on the path and) the difference of the final values of X and Y equals weight of arc XY .	B2,1,0 (2)
(c)	ACBEGH Length 72 (km)	B1 B1 (2) 10
(a)M1 1A1 2A1ft 3A1ft 4A1 5A1ft (b)1B1 2B1 (c)1B1 2B1	Notes Big replaced by smaller at least once at B or D or E or G or H A, B, C, D boxes all correct, condone lack of 0 in 's working value E and F ft correctly G and Hft correctly CAO ft on their final value. Attempting an explanation, at least 3 stages or one half of general explanation Correct explanation - all six stages, both halves of explanation CAO CAO	

Question Number	Scheme	Marks
7. (a)	Activity Proceeded by Activity Proceeded by Activity Proceeded by (A) $(-)$ E A B I C D E (B) $(-)$ (F) (B) J C D E C A B (G) (B) K F H I (D) (B) H C D L F G H I	B3,2,1,0
(b)		M1 A1 M1 A1
(c)	Critical activities are B D J H L	M1 A1 (2)
(d)		M1 A1 M1 A1

$0-$
$0{ }^{-1}$
advancing learning, changing lives

Question Number	Scheme	Marks
8.	Let x be the number of type A radios and y be the number of type B radios. $(\text { Maximise } \mathrm{P}=) 15 x+12 y$ Subject to $\begin{aligned} & x \geq 50 \\ & \frac{1}{5}(x+y)<x \quad(\text { accept } \leq)[y<4 x] \\ & \frac{2}{5}(x+y)>x \quad(\text { accept } \geq)[2 y>3 x] \\ & 3 x+2 y \leq 200 \\ & y \geq 0 \end{aligned}$	B1 B1 B1 B1 B1 B1 B1
$\begin{aligned} & 1 \mathrm{~B} 1 \\ & 2 \mathrm{~B} 1 \\ & \text { 3B1 } \\ & 4 \mathrm{~B} 1 \\ & 5 \mathrm{~B} 1 \\ & 6 \mathrm{~B} 1 \\ & 7 \mathrm{~B} 1 \end{aligned}$	Notes Defining x and y; Must see 'number of' CAO objective function $15 x+12 y$ $\begin{array}{ll} \text { CAO } & x \geq 50 \\ \text { CAO o.e } & \frac{1}{5}(x+y)<x \Rightarrow y<4 x \\ \text { CAO o.e } & \frac{2}{3}(x+y)>x \Rightarrow 2 y>3 x \\ \text { CAO o.e } & 3 x+2 y \leq 200 \\ \text { CAO } & y \geq 0 \end{array}$	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA027669 J une 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Rewarding Learning

Mark Scheme (Results)

January 2012

GCE Decision D1 (6689) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2012
Publications Code UA030319
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
\left(x^{2}+b x+c\right) & =(x+p)(x+q), \text { where }|p q|=|c|, \text { leading to } x=\ldots \\
\left(a x^{2}+b x+c\right) & =(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a|, \text { leading to } x=\ldots
\end{aligned}
$$

2. Formula

Attempt to use correct formula (with values for a, b and c), leading to $x=\ldots$
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)
2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Notes

a1M1: First three arcs correctly chosen and DF rejected. Accept weights for all 3 marks.
Special case: If all 7 arcs, in correct order, but no rejections seen at all, then award M1 only.
a1A1: All arcs/weights in tree selected correctly at correct time.
a2A1: All rejections correct and at the right time.
b1M1: First four arcs/weights correctly chosen, or first five nodes ADCFB chosen in order.
Special case : If Prim but not starting at A please send to review.
b1A1: First five arcs/weights correctly chosen, or all nodes in order A, D, C, F, B, E, G, H.
b2A1: CSO (must be arcs/weights). E.g no 'reject' arcs
c1B1: CAO mark what you see at (c).
d1B1: CAO mark what you see at (d).

Question Number	Scheme	Marks
Q2		
(a)	$\mathrm{BD}+\mathrm{EF}=10+17=27$	M1 A1
	$\mathrm{BE}+\mathrm{DF}=15+10=25 \neg$	
	$\mathrm{BF}+\mathrm{DE}=20+14=34$	
	Repeat arcs BC, CE and DF	A1ft
	Length of route $=129+25=154$	B1ft
		6
(b)	We add $\mathrm{BF}(12)$ to the network so only have to repeat DE (14)	M1
	Length of route is therefore $129+12+14=155$	A1 2
	$155>154$ so his route would be increased	
		Total 8

Notes

a1M1: Three pairings of their four odd nodes
a1A1: One row correct including pairing and total
a2A1: Two rows correct including pairing and total
a3A1: Three rows correct including pairing and total
a4A1ft: Their smallest repeated arcs, (accept BCE).
a1B1ft: 129 + their least out of a choice of at least two possible, distinct, pairings.
b1M1: DE identified, using/repeating $12+$ their DE [ft from (a)]
b1A1: CAO, conclusion, numerical argument e.g. ref to 155 or 26 etc.

Notes

a1B1: 2 sets of vertices
a2B1: arcs must go from one set into the other.
b1B1: pairing or one to one.
b2B1: element(s) from 1 set with element(s) of the other.
c1M1: Path from J to 3 - or vice versa
c1A1: CAO including change status (stated or shown), chosen path clear.
c2A1: CAO unambiguous. Must ft from stated path, diagram ok
d1M1: Path from S to 5 (or vice versa)
d1A1: CAO including change status (stated or shown), but only penalise once per question, chosen path clear.
d2A1: CAO unambiguous. Must ft from stated paths, diagram ok. Must have both M's.

Notes

In (a) Accept any rising sequence for order of labelling. Order of working values is crucial.
a1M1: Big replaced by small in working values at least once at D or F or I or J.
a1A1: A, B, C, H boxes all correct, condone lack of 0 in A's working value
a2A1ft: E and D ft, based on their order of labelling. Penalise order of labelling only once.
a3A1ft: G and F ft, based on their order of labelling. Penalise order of labelling only once.
a4A1: I and J CAO. Penalise order of labelling only once.
a1B1: Route CAO
a2B1ft: 114 , or their final value ft .
b1B1: route CAO.
b2B1: length CAO.

Notes

a1M1: Bin 1 correct 13 and 16 in bins 2 and 3 .
a1A1: \quad Bin 2 correct 8 in bin 4 .
a2A1: CAO
b1M1: End number (greatest/least) in place. Consistent direction throughout.
b1A1: first pass correct.
b2A1ft: $2^{\text {nd }}$ and $3^{\text {rd }}$ passes correct - so end three numbers in place.
b3A1ft: $4^{\text {th }}$ and $5^{\text {th }}$ passes correct - so end five numbers in place.
b4A1: cso including 'sorted', or extra pass (es), ruling off, boxed, ticked etc.
c1M1: Bins 4 and 5 correct, others started.
Special case: If list at end of (b) wrong give M1 only for their $1^{\text {st }} 7$ terms placed correctly.
c1A1: Bins 2 and 3 correct up to the 5 s.
c2A1: cao
d1M1: Numerical argument. E.g. Attempt to find lower bound o.e., consideration of 'spare room'. Etc. (Accept '5 items ≥ 10 ' o.e for M1 only)
d1A1: correct numerical argument; conclusion (the yes/no) may follow from (c).

Alternatives for Question 5(b)

Right to left

5	1	8	13	16	5	8	2	15	12	10	1M1
16	5	1	8	13	15	5	8	2	12	10	1A1
16	15	5	1	8	13	12	5	8	2	10	
16	15	13	5	1	8	12	10	5	8	2	2A1ft
16	15	13	12	5	1	8	10	8	5	2	
16	15	13	12	10	5	1	8	8	5	2	3A1ft
16	15	13	12	10	8	5	1	8	5	2	
16	15	13	12	10	8	8	5	1	5	2	
16	15	13	12	10	8	8	5	5	1	2	
16	15	13	12	10	8	8	5	5	2	$1+$ Stop	

4A1

Misreads - allow recovery if list reversed.
Left to right ascending

| 5 | 1 | 8 | 13 | 16 | 5 | 8 | 2 | 15 | 12 | 10 | 1M1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5 | 8 | 13 | 5 | 8 | 2 | 15 | 12 | 10 | 16 | $\mathbf{1 A 1}$ | |
| 1 | 5 | 8 | 5 | 8 | 2 | 13 | 12 | 10 | 15 | 16 | | |
| 1 | 5 | 5 | 8 | 2 | 8 | 12 | 10 | 13 | 15 | 16 | $\mathbf{2 A 1 f t}$ | |
| 1 | 5 | 5 | 2 | 8 | 8 | 10 | 12 | 13 | 15 | 16 | | |
| 1 | 5 | 2 | 5 | 8 | 8 | 10 | 12 | 13 | 15 | 16 | 3A1ft | |
| 1 | 2 | 5 | 5 | 8 | 8 | 10 | 12 | 13 | 15 | $16+$ stop | 4A1 | |

Right to Left ascending

| 5 | 1 | 8 | 13 | 16 | 5 | 8 | 2 | 15 | 12 | 10 | 1M1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5 | 2 | 8 | 13 | 16 | 5 | 8 | 10 | 15 | 12 | 1A1 | |
| 1 | 2 | 5 | 5 | 8 | 13 | 16 | 8 | 10 | 12 | 15 | | |
| 1 | 2 | 5 | 5 | 8 | 8 | 13 | 16 | 10 | 12 | 15 | 2A1ft | |
| 1 | 2 | 5 | 5 | 8 | 8 | 10 | 13 | 16 | 12 | 15 | | |
| 1 | 2 | 5 | 5 | 8 | 8 | 10 | 12 | 13 | 16 | 15 | 3A1ft | |
| 1 | 2 | 5 | 5 | 8 | 8 | 10 | 12 | 13 | 15 | $16+$ stop | 4A1 | |

Q6 Notes:

a1B1: CAO, both. Must be \leq and \geq not $<$ and $>$.
b1B1: $3 x+4 y=360$ CAO. If extended it must go axis to axis within one small square. Must be long enough to form the correct feasible region. Lines should be drawn with a ruler.
b2B1: $x=2 y$ If extended must go through $(0,0)$ and $(120,60)$ within one small square. Must be long enough to form the correct feasible region. Lines should be drawn with a ruler.
b 3 B 1 ft : ft their lines for correct shading on one of their lines. Implicit if R is correct.
b4B1: Region R correct, CAO. Must be labelled.
c1B1: CAO
d1M1: Drawing objective line or its reciprocal.
d1A1: Correct objective line. Axis to axis $(0,30)$ to $(10,0)$ minimum.
d2DM1: Depends on $1^{\text {st }} \mathrm{M}$ and correct region. Finding their correct optimal point.
d2A1: CSO
e1B1: CAO

The vertices in \mathbf{R} are:
$(40,20)(40,50)\left(53 \frac{1}{3}, 50\right)$
$(72,36)$

Q7 Notes

ai1B1: K, I, D and at least one of B, E, F referred to. Correct statement but maybe incomplete give bod here. ai2DB1: Clear correct statement. No bod.
aii3B1: correct statement referring to either events or activities. ('unique' alone not enough)
b1M1: All top boxes complete, values generally increasing left to right, condone one rogue
b1A1: CAO
b2M1: All bottom boxes complete, values generally decreasing R to L , condone one rogue
b2A1: CAO
c1M1: Correct calculation seen once, all three numbers correct (ft).
c1A1ft: one float (≥ 0) correct.
c1B1: Both floats correct (independent of working)
d1M1: Attempt to calculate a lower bound. [51-67 / their finish time]. Accept awrt 2.81
d1A1: CSO.
e1M1: At least 7 activities including at least 4 floats. Do not accept scheduling diagram.
e1A1: Critical activities dealt with correctly
e2M1: All 11 activities including at least 8 floats
e2A1: Non-critical activities dealt with correctly

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA030319 January 2012

Llywodraeth Cynulliad Cymru
Welsh Assembly Government
For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828

Rewarding Learning

edexcel "

Mark Scheme (Results)

Summer 2012

GCE Decision D1
(6689) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA031965
All the material in this publication is copyright
© Pearson Education Ltd 2012

Summer 2012

6689 Decision Maths 1

Mark Scheme

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
-There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
-Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol ${ }^{\text {- }}$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question 1 (c) Misread
Usual rule, remove the last 2 A marks awarded in (c) if list not reversed.

Note: if final list is reversed in (c), award full credit

20	33	19	24	31	22	27	18	25	M1
20	19	24	31	22	27	18	25	33	
19	20	24	22	27	18	25	31	33	A1
19	20	22	24	18	25	27	31	33	
19	20	22	18	24	25	27	31	33	A1ft
19	20	18	22	24	25	27	31	33	
19	18	20	22	24	25	27	31	33	
18	19	20	22	24	25	27	31	33	A1 CSO
List in order									
									M1
20	33	19	24	31	22	27	18	25	A1
18	20	33	19	24	31	22	27	25	A1ft
18	19	20	33	22	24	31	25	27	
18	19	20	22	33	24	25	31	27	
18	19	20	22	24	33	25	27	31	A1 CSO
18	19	20	22	24	25	33	27	31	
18	19	20	22	24	25	27	33	31	
18	19	20	22	24	25	27	31	33	
List in order									

Summer 2012
 6689 Decision Mathematics D1
 Mark Scheme

Question Number	Scheme	Marks
1.(a)	$\frac{219}{50}=4.38$ so lower bound is 5 bins	M1 A1 (2)
(b)	$\begin{array}{llllll}\text { Bin 1: } 20 & 19 & \operatorname{Bin} 2: & \operatorname{33} & \operatorname{Bin} 3: 24 & \underline{22} \\ \operatorname{Bin} 5: \underline{27} & \operatorname{Bin} 6: 25 & & \underline{31} & 18 \\ & & & & \end{array}$	M1 1A1 2A1 (3)
(c)	e.g (left to right)	
	$\begin{array}{lllllllll}33 & 20 & 24 & 31 & 22 & 27 & 19 & 25 & 18\end{array}$	M1
	$\begin{array}{llllllllll}33 & 24 & 31 & 22 & 27 & 20 & 25 & 19 & 18\end{array}$	1A1
	$\begin{array}{llllllllll}33 & 31 & 24 & 27 & 22 & 25 & 20 & 19 & 18\end{array}$	
	$\begin{array}{llllllllll}33 & 31 & 27 & 24 & 25 & 22 & 20 & 19 & 18\end{array}$	2A1ft
	$\begin{array}{llllllllll}33 & 31 & 27 & 25 & 24 & 22 & 20 & 19 & 18\end{array}$	
	List in order	3A1 CSO (4)
(d)	Bin 1: 33 Bin 2: $3119 \operatorname{Bin} 3: 27 \underline{22} \operatorname{Bin} 4: 2524 \operatorname{Bin} 5: \underline{20} 18$	M1 1A1 2A1 (3)

Notes for question 1

a1M1 $219(186-252) / 50$
a1A1 CAO correct calc seen or awrt $4.4+5$
b1M1 First four terms placed correctly in bins 1, 2 and 3. (Condone cumulative totals here only.)
b1A1 First seven terms placed correctly.
b2A1 CAO
c1M1 Bubble sort. Consistent direction throughout sort, end number (greatest/least) in place.
c1A1 first and second passes correct - so end two numbers in place
c2A1ft $3^{\text {rd }}$ and $4^{\text {th }}$ passes correct - so end four numbers in place.
c3A1 CSO; including 'sorted'or final list rewritten in (c) or 'final pass' o.e. A clear statement in (c).
d1M1 Must be using 'sorted' list in decreasing order. First five terms correct.
d1A1 First seven terms correct.
d2A1 CAO
SC for 1(d) If 'sorted' list is wrong from (c) then award M1 only in (d) for their first seven terms correctly placed.

Alt for (c) right to left									
20	33	19	24	31	22	27	18	25	
33	20	31	19	24	27	22	25	18	M1
33	31	20	27	19	24	25	22	18	1A1
33	31	27	20	25	19	24	22	18	
33	31	27	25	20	24	19	22	18	2A1ft
33	31	27	25	24	20	22	19	18	
33	31	27	25	24	22	20	19	18	
List in order						3A1 CSO			

Notes for question 2

Mark the candidates best attempt as part (a)

a1M1 Path from G to 4 - or vice versa
a1A1 CAO chosen path clear.
a2A1 Change status step clear stated or shown. [Only accept 'change status'; 'c.s.'; sight of the connectives being swapped]
a3A1 CAO must ft from stated path, diagram ok
b1M1: A second path from G to 4 (or vice versa)
b1A1: CAO including change status (stated or shown), chosen path clear.
b2A1: CAO must ft from stated paths, diagram ok.

Notes for question 3

a1B1 All four arcs CAO (+ see below)
a2B1 All four weights CAO.

Additional notes for (a)

- If B0 B0 but three arcs and their weights correct then give B1 B0.
- If extra arcs and weights remove second B mark (so B1 B0 max)
- If just one of DB or DE or DC missing, mark remainder of question as a misread.
- If two or more arcs are missing send to review.
- If DF used instead of DG, ignore references to this in (b)
b1M1 First three arcs correctly chosen and at least one rejection seen at some point. (Kruskal not Prim.)
b1A1 First five arcs selected correctly; BD, DE, CD, then (in either order) EF, AB
b2A1 CAO including necessary rejections.
c1B1 CAO condone missing weights.
d1B1 CAO

Question Number	Scheme	Marks
3(a)		$\begin{aligned} & \text { 1B1 } \\ & \text { 2B1 } \end{aligned}$
(b)	$\mathrm{BD}(8), \mathrm{DE}(10), \mathrm{CD}(12)$, reject $\mathrm{BE}(13)$, $\{\mathrm{EF}(15), \mathrm{AB}(15)\}$, $\{E G(16)$, reject $\mathrm{CF}(16)\}$ reject remainder of arcs.	(2) M1 1A1 2A1
(c)		B1
(d)	Weight of tree $=76(\mathrm{~km})$	B1 (1) Total 7 marks

Question Number	Scheme	Marks
4(a)	The valency of a vertex is the number of edges incident to it. (b)	$\mathrm{DE}+\mathrm{HI}=131+75=206$ $\mathrm{DH}+\mathrm{EI}=146+137=283$ $\mathrm{DI}+\mathrm{EH}=143+62=205^{*}$ Arcs EH, DF and FI will be traversed twice. (c) Route length = 1436 + 205 = 1641(m)
(d)	Since HI is removed only D and E are odd, So only the route between DE need to be repeated Route length = 1436 - 75 (for HI) $+131=1492(m)$ Route should start and finish at D and E.	
(e)	2A1 E.g DCFDAEBGEFKIFHJGHE (18 vertices) $4 A 1 \mathrm{ft}$	(5)
B1ft	(1)	

Notes for question 4

a1B1 Give bod but refers to arc/edge and to node/vertex
a2B1 A clear, correct statement. CAO.
b1M1 Three pairings of their four odd nodes
b1A1 One row correct including pairing and total
b2A1 Two rows correct including pairing and total
b3A1 Three rows correct including pairing and total
b4A1ft Their smallest repeated arcs, (accept DFI).
c1B1ft Must have a choice of at least two pairs seen in part (b). $1436+$ their least from (a).
d1M1 Aim to include their $\mathrm{DE}(131)$ [ft from (b)] and remove $\mathrm{HI}(75)$ or $1436+131-75$
d1A1 CAO 1492. Must see method though, NMS gets M0.
e1M1 D and E identified as start and finish nodes. We do not have to see a route here.
e1A1 CAO must see a route. 18 vertices; Each of A-K present; 3E's, 3F's, 2D's,2G's and 2H's.

Question Number	Scheme	Marks
5(a)		
		M1 A1(SCFA) A1ft (BD) A1(ET)
	SCFBDET ; length 65	1B1; 2B1ft (6)
(b)	E.g. $65-20=45 \mathrm{ET} ; 45-12=33 \mathrm{DE} ; 33-10=23 \mathrm{BD} ; 23-9=14 \mathrm{FB}$; $14-6=8$ CF; $8-8=0$ SC Or Work back from T, including arc $X Y$ if the weight of arc $X Y=$ the difference in the final values of X and Y .	B2ft, $1 \mathrm{ft}, 0$ (2)
(c)	SCFBET; length 68	B1; B1 (2) Total 10

Notes for question 5

a1M1 Big replaced by smaller at least once at B or D or E or T.
a1A1 S, C, F and A boxes all correct, condone lack of 0 in A's working value
a2A1ft B and D ft correctly. Penalise order of labelling only once per question.
a3A1 E and T correct. Penalise order of labelling only once per question.
a1B1 Route CAO
a2B1ft their final value ft .
b1B1ft Attempting an explanation, at least 3 stages or one half of general explanation.
b2B1ft Correct explanation - all stages, both halves of explanation
c1B1 Route CAO.
c2B1 length CAO.
Amplification for (b)
General explanation:
1B1 for partial explanation e.g.'working backwards/traceback' or ref to arcs and final value differences
2B1 for working backwards from $\mathbf{T}+$ include an arc $X Y$ if weight of $X Y=$ final value of $Y-$ final value of X.

Demonstration:
1B1 for three correct calculations for their network
2B1 for all calculations correct and linking arcs/nodes to those calculations. Arc lengths and final values visible.

Question 6

a1B1 Any 3 rows completed correctly
a1B2 All five rows completed correctly
b1M1 All top boxes complete, values generally increasing left to right, condone one rogue
b1A1 CAO
b2M1 All bottom boxes complete, values generally decreasing R to L, condone one rogue. Condone missing 0 or 28 for the M only.
b2A1 CAO
c1M1 Correct calculation seen all three numbers correct (ft). Float ≥ 0.
c1A1 CAO
d1M1 Attempt to find lower bound. [52-72 / their finish time] accept awrt 2.2.
d1A1 CAO - correct calculation seen or awrt 2.2, then . [Beware 28/11 gives 3 also, so 3 with no working gets M0A0.]
e1M1 Not a cascade chart. 4 'workers' used at most. At least 7 activities. If in doubt send to review.
e1A1: CHKAB correct. C-14; H-10; $\mathrm{K}-4$; A - 5; B - 9. A and B completed by their late finish times. (A by time $=18$ B by time = 21).

Now you need to check the last 6 activites - the last two marks are for D, E, F, G, I, J only
First check that they have only used three workers and that all 11 activities are present (just once).
Then check precedences: You have these on the mark scheme in (a).
Each row of the table in (a) could give rise to 1 error (only)
I'd suggest you check these ones first since they are most likely to generate errors.

- F must not start until after B and E are complete.
- G must not start until after B and E are complete.
- J must not start until after C, D, F are complete.
- I must not start until after D and F are completed

You need to check the others too of course.
Finally you need to check the length of each activity.
Length 5 - A, I
Length 4 - D
Length 3 - E, G, J
Length 2 - F
Length 9 - B
e2A1: 3 workers. All 11 activities present (just once). Condone one error either precedence, or activity length, on activities D, E, F, G I, J.
e3A1: 3 workers. All 11 activities present (just once). No errors on activities D, E, F, G I, J.
Please use the pen or highlighter tool to indicate any errors to your team leader.
Usually we use a vertical line to indicate precedence errors, indicating the overlap, and a horizontal line to indicate an activity of incorrect length.

Question Number	Scheme	Marks
$7 \quad$ (a)	$y \leq x$	B1 (1)
(b)	$\begin{aligned} y & \geq \frac{1}{6}(x+y) \\ 6 y & \geq x+y \\ 5 y & \geq x \end{aligned}$	B2,1,0
(c)	$5 x+6 y \leq 300$	B1 (1)
(d)	Two lines and shading correctly added	B1 B1 (2)
(e)	R correctly labelled	B1 (1)
(f)	Objective line correctly drawn and labelled Optimal vertex labelled	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 (3) } \end{aligned}$
(g)	Buy 48 standard and 10 luxury cars, Expected profit $£ 4640$ per week	1B1 2B1, 3B1 $\begin{equation*} 13 \text { marks } \tag{3} \end{equation*}$

Notes for question 7

a1B1 CAO

b1B1 Either of my first two lines. Must have three terms, two in y and one in x.
b2B1 CSO. (Answer given) must have \geq throughout.
c1B1 CAO
In (d) If lines do not meet both axis then extend as necessary, but must extend beyond the feasible region. Use the line drawing tool to check.
d1B1 $5 y=x$ drawn correctly, passes within a small square of $(0,0)$ and $(50,10)$. Ignore shading.
d2B1 $5 x+6 y=300$ drawn correctly, passes within a small square of $(0,50),(30,25)$ and $(60,0)$ Ignore shading.
e1B1 CAO - but must have scored both marks in (d)
f1M1 Drawing objective line with correct gradient, use line drawing tool to check if necessary. You can give BOD here if it is close. If their line is shorter than the length equivalent to that of line $(0,5)$ to $(5,0)$, please send to review.
f1A1 Correct objective line drawn (so no BOD) and their correct V labelled, or clearly indicated, or coordinates written to 1 dp .
f2A1 CSO, R correct, my V labelled or clearly indicated, or coordinates written to 1dp so awrt (9.7, 48.4). g1B1 Finding vertex, in my R, with integer coordinates. Must be within 2 small squares of their V and must be maximising, so accept only; $(48,10),(47,10),(46,11),(27,27),(28,26)$.
g2B1 CAO $(48,10)$
g3B1 CAO 4640

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA031965 Summer 2012

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

edexcel

Mark Scheme (Results)
January 2013

GCE Decision Mathematics D1 6689/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013
Publications Code UA034373
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.
3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but incorrect answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. I gnore wrong working or incorrect statements following a correct answer.
8. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of ' 0 ' or ' 1 ' for each mark, or "trait", as shown:

	0	1
$a M$		\bullet
$a A$	\bullet	
$b M 1$		\bullet
$b A 1$	\bullet	
$b B$	\bullet	
$b M 2$		\bullet
$b A 2$		\bullet

J anuary 2013
6689 Decision Mathematics 1 Mark Scheme

Question Number		Sche			Marks
1 (a)	N	E	R	Qn	
	72	8	8.5	N	M1
		8.5	8.485294118	N	A1
		8.485294118	8.485281374	N	
		8.485281374	8.485281374	Y	A1
	Output is $\mathrm{R}=8.4852814$				A1ft (4)
(b)	We would get a negative output for R / We would get the negative square root				B1 (1)
(c)	E cannot be zero				B1 (1)
					Total 6 marks
	Notes a1M1: At least two rows of cells in just E and R completed. a1A1: CAO first two rows correct giving exact values or awrt 7dp (the exact second value for R is $\frac{577}{68}$). a2A1: CAO third and fourth rows awrt 7dp a3A1ft: Output for R must follow through from their final value for R awrt 7dp - candidate must have answered 'yes' to score this mark. Output either on the answer line (or on the second page) or stated in the table but must be in the column for R below the row which contains 'yes'. Condone $\mathrm{N}=72$ on each row and entries appearing on separate rows throughout for full marks. Allow e.g. ticks/crosses etc. for yes/no. b1B1: Mention of 'negative' scores B1 however do not accept incorrect statements but bod that 'negative' only is implicitly describing the effect on the output. Accept 'other square root'. c1B1: CAO (nothing/null etc. scores B0). Condone $\mathrm{E}=0$.				

Question Number	Scheme				Marks
	Misread in (a): Starting at a node other than A scores M1 only - must have the first four arcs (or five nodes or numbers) correct.				
	Starting at	Minimum Arcs required for M1 only	Nodes	Order	
	B	BE,EF,DF,CF	B, E, F, D, C	(10)15423(8967)	
	C	CF,DF,EF,BE	C, F, D, E, B	(10)51342(8967)	
	D	DF,CF,EF,BE	D, F, C, E, B	(10)53142(8967)	
	E	BE,EF,DF,CF	E, B, F, D, C	(10)25413(8967)	
	F	DF,CF,EF,BE	F, D, C, E, B	(10)53241(8967)	
	G	GJ,IJ,FI,DF	G, J, I, F, D	(10)(86)5(7)41(9)32	
	H	DH,DF,CF,EF	H, D, F, C, E	(10)(6)4253(9)1(78)	
	I	IJ,GJ,FI,DF	I, J, G, F, D	(10)(86)5(7)43(9)12	
	J	GJ,IJ,FI,DF	J, G, I, F, D	(10)(86)5(7)42(9)31	

Question Number	Scheme	Marks
	f1M1: At least three of their (or the correct) R vertices found (by either reading off their graph or using simultaneous equations) and tested using their T (or the correct T). Objective line method (only) is M0.	
f1A1: Three vertices found and tested correctly CAO (must be using three of the correct vertices (see table above) and the values for T must be correct). f2A1: All five vertices found and tested correctly CAO (all values of T must be correct). f3A1: CAO number of each and time, both correct and it must be clear that X = 20 and y = 30 (accept as coordinates). If values appear in e.g. a table it must be clear that (20, 30) and 320 has been selected (condone lack of/incorrect units on the time).		

Question Number	Scheme	Marks
	e3A1: All 9 non-critical activities correct f1B1: CAO g1M1: A statement with the correct number of workers and details of either time or activities correct. If no part of their statement is correct then allow M mark (only) on the ft with time and activities from their 13 activity, 9 float diagram. Scheduling the activities only or a lower bound calculation argument scores M0. g1A1: A correct, complete full statement details of time and activities (The two options are F, B, C and G with 9 < time < 10 or F, C, G and H with 10 <time < 11). Please note strict inequalities for the time. Allow e.g. on 'day 10' as equivalent to 9 < time < 10.	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467

Fax 01623450481

Email publication.orders@edexcel.com
Publications Code UA034373 January 2013
 Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

edexcel

Mark Scheme (Results)
Summer 2013
GCE Decision Maths D1 (6689/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA035692
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- [The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as Al ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

Question Number	Scheme	Marks
1. (a)	$\mathrm{C}-5=\mathrm{F}-2=\mathrm{D}-6$ change status to give $\mathrm{C}=5-\mathrm{F}=2-\mathrm{D}=6$ Improved matching is (A unmatched) $B=4, C=5, D=6, E=1, F=2$	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 } \end{aligned}$
(b)	E.g. activities 3 and 4 can only be done by B E.g. both A and E can only do activity 1	B1 (1)
(c)	$\mathrm{A}-1=\mathrm{E}-6=\mathrm{D}-2=\mathrm{F}-4=\mathrm{B}-3$ Change status to give $A=1-E=6-D=2-F=4-B=3$ Complete matching is $\mathrm{A}=1, \mathrm{~B}=3, \mathrm{C}=5, \mathrm{D}=2, \mathrm{E}=6, \mathrm{~F}=$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$
		(7 marks)
Notes for Question 1		
a1M1: An alternating path (e.g. letter - number - letter - ...) from C to 6 or vice versa a1A1: CAO - a correct path including change status either stated (only accept 'change (of) status' or 'c.s.') or shown (all symbols e.g. (...-... = ...) interchanged (... = ... - ...)). Chosen path clear. a2A1: CAO must follow from the correct stated path. Accept on a clear diagram (with five arcs only). b1B1: A good, clear, complete, correct answer (all relevant nodes must be referred to and must be correct) c1M1: An alternating path from A to 3 or vice versa. c1A1: CAO including change status (stated or shown), chosen path clear. c2A1: CAO must follow from two correct stated paths (so both previous M marks must have been awarded). Accept on a clear diagram (with six arcs only).		

Question Number	Scheme	Marks
2. (a)	$\mathrm{AB}(85), \mathrm{BC}(100), \mathrm{BD}(135) ; \mathrm{BF}(150), \mathrm{EF}(140) .$	M1 A1; A1 (3)
(b)		B1
(c)	610 (minutes)	B1 (1)
(d)	E.g. (any three) - Kruskal starts with the shortest arc, Prim starts with any node. - It is necessary to check for cycles when using Kruskal, not with Prim. - When using Prim the 'growing' tree is always connected. - When using Kruskal arcs are considered in ascending order of weight. - Prim can be used when the network is given in matrix form. - Prim adds nodes to the growing tree, Kruskal adds arcs. Other correct statements also get credit	B1 B1 B1 (3)
		(8 marks)

Notes for Question 2

a1M1: Prim's - first three arcs correctly chosen or first four nodes correctly chosen, in order. $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \ldots .$.$\} . Any rejections seen during selection is M0. Order of nodes may be seen across$ the top of the matrix $\{1,2,3,4,-,-\}$
a1A1: First four arcs correctly chosen or all six nodes correctly chosen $\{$ A, B, C, D, F, E\}. Order of nodes may be seen across the top of the matrix $\{1,2,3,4,6,5\}$
a2A1: CSO (must be considering arcs for this final mark).
Misread: Starting at a node other than A scores M1 only - must have the first three arcs (or four nodes or numbers) correct.

Starting at	Minimum arcs required for M1	Nodes	order
A	AB BC BD	ABCD(FE)	$1234(65)$
B	AB BC BD	BACD(FE)	$2134(65)$
C	BC AB BD	CBAD(FE)	$3214(65)$
D	BD AB BC	DBAC(FE)	$3241(65)$
E	EF BF AB	EFBA(CD)	$43(56) 12$
F	EF BF AB	FEBA(CD)	$43(56) 21$

b1B1: CAO (weights on arcs not required)
c1B1: CAO (condone lack of/incorrect units)
d1B1: One correct statement.
d2B1: A second correct statement.
d3B1: A third correct statement.
In part (d) all technical language must be correct (so do not condone point for vertex/node etc.)

Notes for Question 3

a1M1: All top boxes complete, values generally increasing left to right, condone one rogue.

a1A1: CAO.

a2M1: Bottom boxes complete, values generally decreasing right to left, condone one rogue. Condone missing 0 or 37 for the M mark only.
a2A1: CAO
b1M1: Correct calculation seen. All three numbers correct (ft).
b1A1: Float correct (no follow through on this mark)
c1M1: Attempt to find lower bound. [82-104 / their finish time] accept awrt 2.5
c1A1: CAO - correct calculation seen or awrt 2.5 , then 3 . (Beware $37 / 13$ gives 3 also, so 3 with no working gets M0A0.)
d1M1: Not a cascade chart. 4 workers used at most. At least 8 new (10 in total) activities placed.
d1A1: The critical activities (F I K M) and B correct. F-8; I-9; K - 5; M - 6; B-7. B completed by 9 (its late finish time).

Now check the last 6 activities - the last two marks are for D, E, G, H, J and L only
First check that there are only three workers and that all 11 new (13 in total) activities are present (just once).

Then check precedences (see table below) - each row of the table could give rise to 1 error only in precedences

Finally check the length of each activity (see number in brackets in the activity column in the table below)

Activity	I.P.A	Activity	I.P.A
A (8)	-	H (5)	C
B (7)	-	I (9)	E F
C (9)	-	$\mathrm{J}(11)$	G H
D (9)	A	K (5)	D I
E (5)	A	L (4)	D I
F (8)	B C	M (6)	E F J K
G (7)	B C		

d2M1: 3 workers. All 11 new (13 in total) activities present (just once). Condone one error either precedence, or activity length, on activities D, E, G, H, J and L.
d2A1: 3 workers. All 11 new (13 in total) activities present (just once). No errors on activities D, E, G, H, J and L.

Notes for Question 4 Continued

Additional solutions
Quick sort middle left

S	J	H	A	C	K	P	D	T	L	Pivot C	M1
A	C	S	J	H	K	K	D	T	L	Pivots (A) and K	
A	C	J	H	D	K	S	P	T	L	Pivots H and P	A1

$\begin{array}{lllllllll}\underline{A} & \underline{C} & \mathrm{D} & \underline{H} & \mathrm{~J} & \underline{K} & \mathrm{~L} & \underline{P} & \mathrm{~S}\end{array} \mathrm{~T} \quad$ Pivots ($\mathrm{D}, \mathrm{J}, \mathrm{L}$) and S
$\underline{A} \underline{C} \underline{D} \underline{H} \underline{K} \underline{\mathrm{~L}} \underline{\mathrm{~S}} \mathrm{~T}$ A1
Quick sort complete

Bubble sort left to right
S J H A C K P D T L
J H A Cllllllll \mathbf{C}
H A C J K
A C H J D K L P S T
A C H D J K L P S T
A C D H J K L P S T
Sort correct
A1
Bubble Sort complete
Sort named correctly + 'stop’
A1

Bubble sort right to left:
S J H A C K P D T L
A S J H C D K P L T
A in place, consistent direction
M1
A Cllllllllll A1
A C D S J H K L P T
A C D H S J K L P T
A C D H J S K L P T
A C D H J K S L P T
A C D H J K L S P T
A C D H J K L P S T
Bubble Sort complete
$\begin{array}{ll}\text { Sort correct } & \text { A1 } \\ \text { Sort named correctly + 'stop' } & \text { A1 }\end{array}$

Question Number	Scheme	Marks
5. (a)	AF $+\mathrm{GH}=15+31=46^{*}$ $\mathrm{AG}+\mathrm{FH}=32+15=47$ $\mathrm{AH}+\mathrm{FG}=30+17=47$ so repeat arcs AB, BF and GH E.g. ABCDBFDEHGFHGAFBA (17 nodes) length $=181+46=227$	A3,2,1.0
(b)	A1	

	Scheme	Marks
7. (a)	E.g. We would be able to find the shortest distance from J to every other vertex. E.g. We would only need to apply Dijkstra’s algorithm once.	M1 A1 (G, H, I J) A1(D, E, F) A1ft $\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$ A1 A1ft (6) (7 marks)
Notes for Question 7		
a1B1: CAO b1M1: A larger value replaced by a smaller value at least once in the working values at either G, E, D, C_{1} or C_{2}. b1A1: All values in G, H, I and J correct. The working values at G must be in the correct order. Condone lack of 0 in the working value at J . b2A1: All values in D, E and F correct and the working values in the correct order. Penalise order of labelling only once per question. (F, E and D labelled in that order with G, H, I and J labelled before F). b3A1ft: All values in C_{1} and $\mathrm{C}_{2} \mathrm{ft}$ correct and the working values in the correct order. Penalise order of labelling only once per question. (C_{2} labelled after all other nodes (D to J) - condone lack of final value or order of labelling for C_{1}) b4A1: Route CAO b5A1ft: Their final value ft (if answer is not 48 ft their final value at either C_{1} or C_{2} dependent on their route) If the candidate uses either $\mathbf{C}_{\mathbf{1}}$ or $\mathbf{C}_{\mathbf{2}}$ as the starting vertex then this is not a misread. They can score a maximum of M1A0A0A0A1A1ft. If starting at: $\mathrm{C}_{\mathbf{1}}$ - M1 for a larger value replaced by a smaller value at either $\mathrm{C}_{2}, \mathrm{~F}, \mathrm{G}, \mathrm{H}, \mathrm{I}$ or J , then A0 A0 A0 then A1 for the route (C_{1} DFGIJ) and then A 1 for 49 (or ft their final value at J). $\mathrm{C}_{2}-\mathrm{M} 1$ for a larger value replaced by a smaller value at either $\mathrm{C}_{1}, \mathrm{~F}, \mathrm{G}, \mathrm{H}, \mathrm{I}$ or J , then A0 A0 A0 then A1 for the route (C_{2} EFGIJ) and then A1 for 48 (or ft their final value at J). If the candidate uses both C_{1} and $\mathrm{C}_{\mathbf{2}}$ as the starting vertices then award M 1 for a larger value replaced by a smaller value at either F, G, H, I or J, then A0 A0 A0 then A1 for the correct route only (C_{2} EFGIJ) and A1 for 48 (no ft).		

Notes for Question 8

a1B1: CAO for $y \leq 16$
a1M1: Coefficients correct, accept $=,<,>, \leq, \geq$ here
a1A1: CAO
b1M1: Coefficients correct and 120 accept $=,<,>, \leq, \geq$ here
b1A1: CAO
c1M1: Accept non-integer coefficients here, accept $=,<,>, \leq, \geq$ here, coefficients correct.
c1A1: CAO must be integer coefficients.
d1B1: $4 x+3 y=120$ correctly drawn. The line must pass within one small square of the point $(18,16)$ and if line extended must go from axis to axis through the points of intersection with the axes within one small square. The line must be long enough to form the feasible region. Check using measurement tool if required. Ignore shading.
d2B1: $x=3 y$ correctly drawn. The line must pass within one small square of the origin and the point (24, 8). The line must be long enough to form the feasible region. Ignore shading.
d3B1: R labelled (not just implied by shading) - must have scored the first two marks in this part.
e1B1: CAO (isw if $(P=) 45 x+30 y$ is simplified to $k(45 x+30 y)$ but if $45 x+30 y$ not stated then B0)
f1M1: At least two of their, or the correct R vertices found (either by reading off their graph or using simultaneous equations) and tested using their P. Objective line method (only) is M0.
f1A1: Two vertices found and tested correctly CAO (must be using two of the correct vertices and the values for P must be correct).
f2A1: Three vertices found and tested correctly CAO (must be using three of the correct vertices and the values for P must be correct).
f3A1: All four vertices found and tested correctly CAO (all values of P must be correct).
g1B1: CAO for profit (condone lack of $£$)

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA035685 Summer 2013

Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

Mark Scheme (Results)

Summer 2013

GCE Decision Mathematics 1 (6689/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA035685
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

a1B1: CAO, but be charitable on spelling, award if phonetically close.
b1M1: An alternating path (e.g. letter - number - letter $-\ldots$) from either B to 2 or 6 or from I to 2 - or vice versa
b1A1: CAO - a correct path including change status either stated (only accept 'change (of) status' or 'c.s.') or shown (all symbols e.g. (...... $=\ldots$) interchanged ($\ldots=\ldots-\ldots$). Chosen path clear.
b2A1: CAO must follow from the correct stated path. Accept on a clear diagram (with five arcs only). b2M1: A second alternating path from the remaining (unused) I or B to the remaining (unused) 6 or 2 or vice versa.
b3A1: CAO including change status (stated or shown), chosen path clear
b4A1: CAO must follow from two correct stated paths (so both previous M marks must have been awarded).
Accept on a clear diagram (with six arcs only).

Notes for Question 2 Continued

Part (b) Using middle left as pivot

0.6	1.5	1.6	0.2	0.4	0.5	0.7	0.1	0.9	0.3	pivot 0.4	M1	
0.6	1.5	$\underline{1.6}$	0.5	0.7	0.9	$\underline{0.4}$	0.2	$\underline{0.1}$	0.3	pivots 1.60 .1	A1	
$\underline{1.6}$	0.6	1.5		0.5	0.7	0.9	$\underline{0.4}$	$\underline{0.2}$	0.3	$\underline{0.1}$	pivots 0.50 .2	
$\underline{1.6}$	0.6	$\underline{1.5}$	0.7	0.9	$\underline{0.5}$	$\underline{0.4}$	$\underline{0.3}$	$\underline{0.2}$	$\underline{0.1}$	pivots $1.5(0.3)$	A1ft	
$\underline{1.6}$	$\underline{1.5}$	0.6	$\underline{0.7}$	0.9	$\underline{0.5}$	$\underline{0.4}$	$\underline{0.3}$	$\underline{0.2}$	$\underline{0.1}$	pivot 0.7		
$\underline{1.6}$	$\underline{1.5}$	0.9	$\underline{0.7}$	0.6	$\underline{0.5}$	$\underline{0.4}$	$\underline{0.3}$	$\underline{0.2}$	$\underline{0.1}$	sort complete	A1cso	

Misreads

- If they have misread a number at the start of part (a), so genuinely miscopied and got say 1.0 instead of 0.1 then mark the whole question as a misread - removing the last two A or B marks earned. This gives a maximum total of 9 .
- If they have used the correct numbers in part (a) and they then use incorrect numbers in part (b) (say 1.0 instead of 0.1) from the beginning of the sort or misread their own numbers during part (b) then count it as an error in part (b) but mark part (c) as a misread - giving a maximum of 8 or maybe 7 marks depending on how many marks they lose in (b).

Sorting list into ascending order in (b)

- If the candidate sorts the list into ascending order and reverses the list in part (b) then they can score full marks.
- If the list is not reversed in part (b) then mark as a misread (so remove the last two A marks if earned in part (b)). If the list is reversed at the start of part (c) but not in part (b) then still treat this as a misread. If the list is still in ascending order in part (c) award no marks for first fit increasing. If the candidate says that the list needs reversing in part (b) but doesn't actually show the reversed list in part (b) then remove the final A mark.

Ascending (middle left)

0.6	1.5	1.6	0.2	$\underline{0.4}$	0.5	0.7	0.1	0.9	0.3	(0.4)	M1
0.2	0.1	0.3	$\underline{0.4}$	0.6	1.5	$\underline{1.6}$	0.5	0.7	0.9	$(0.1,0.6)$	A1
$\underline{0.1}$	$\underline{0.2}$	0.3	$\underline{0.4}$	0.6	1.5	$\underline{0.5}$	0.7	0.9	$\underline{1.6}$	$(0.2,0.5)$	
$\underline{0.1}$	$\underline{0.2}$	$\underline{0.3}$	$\underline{0.4}$	$\underline{0.5}$	0.6	$\underline{1.5}$	0.7	0.9	$\underline{1.6}$	$((0.3), 1.5)$	A1ft
$\underline{0.1}$	$\underline{0.2}$	$\underline{0.3}$	$\underline{0.4}$	$\underline{0.5}$	0.6	$\underline{0.7}$	0.9	$\underline{1.5}$	$\underline{1.6}$	(0.7)	
$\underline{0.1}$	$\underline{0.2}$	$\underline{0.3}$	$\underline{0.4}$	$\underline{0.5}$	0.6	$\underline{0.7}$	0.9	$\underline{1.5}$	$\underline{1.6}$		A1cso+complete
Ascending (middle right)											
0.6	1.5	1.6	0.2	0.4	$\underline{0.5}$	0.7	$\underline{0.1}$	0.9	0.3	(0.5)	M1
0.2	0.4	$\underline{0.1}$	0.3	$\underline{0.5}$	0.6	1.5	$\underline{1.6}$	0.7	0.9	$(0.1,1.6)$	A1
$\underline{0.1}$	0.2	$\underline{0.4}$	0.3	$\underline{0.5}$	0.6	1.5	$\underline{0.7}$	0.9	$\underline{1.6}$	$(0.4,0.7)$	
$\underline{\underline{0.1}}$	0.2	$\underline{0.3}$	$\underline{0.4}$	$\underline{0.5}$	$\underline{0.6}$	$\underline{0.7}$	1.5	$\underline{0.9}$	$\underline{1.6}$	$(0.3,(0.6), 0.9)$ A1ft	
$\underline{0.1}$	0.2	$\underline{0.3}$	$\underline{0.4}$	$\underline{0.5}$	$\underline{0.6}$	$\underline{0.7}$	$\underline{0.9}$	1.5	$\underline{1.6}$		A1cso+complete

Notes for Question 3

Accept the weight of each arc to represent the arcs (as each value is unique).
a1M1: Prim’s - first three arcs correctly chosen or first four nodes correctly chosen $\{\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, ...\}. Any rejections seen during selection M0. Order of nodes may be seen at the top of the matrix $\{1,-, 2,3,4,-\}$
a1A1: First four arcs correctly chosen or all six nodes correctly chosen $\{$ A, C, D, E, F, B $\}$. Order of nodes may be seen at the top of the matrix $\{1,6,2,3,4,5\}$
a2A1: CSO (must be considering arcs for this final mark).
Misread: Starting at a node other than A scores M1 only - must have the first three arcs (or four nodes or numbers) correct.

Starting at	Minimum arcs required for M1	Nodes	Order
A	AC CD CE	ACDE(FB)	$1(6) 234(5)$
B	BC AC CD	BCAD(EF)	$3124(56)$
C	AC CD CE	CADE(FB)	$2(6) 134(5)$
D	CD AC CE	DCAE(FB)	$3(6) 214(5)$
E	EF CE AC	EFCA(DB)	$4(6) 3(5) 12$
F	EF CE AC	FECA(DB)	$4(6) 3(5) 21$

b1B1: CAO (weights not required)
c1B1: Any four arcs added correctly (weights not required)
c2B1: CAO (including weights) - bod if arcs 'appear' to be crossed out (they may be using the network diagram to answer part (d)).
d1M1: Kruskal's - first three arcs correctly chosen and at least one rejection seen at some point.
d1A1: All five arcs selected correctly EF, AC, CD, CE, CB.
d2A1: CAO All selections and rejections correct (in correct order and at the correct time).

- Listing all the arcs in order and then listing those arcs in the tree in the correct order is fine for full marks (this implies that rejections are correct and at the correct time)
- Listing all the arcs in order and just drawing the MST is M0

SC for part (d): If the network diagram is incorrect in part (c) and it is clear that the candidate has used part (c) (instead of the original table) to answer part (d) then award M1 only for the first three arcs correctly chosen and at least one rejection seen at some point provided their network is connected and contains at least nine arcs.
e1B1: CAO (ignore lack/incorrect units)

Question Number	Scheme	Marks
5. (a)	$\begin{aligned} & \mathrm{AB}+\mathrm{DE}=44+30=74^{*} \\ & \mathrm{AD}+\mathrm{BE}=42+35=77 \\ & \mathrm{AE}+\mathrm{BD}=39+38=77 \end{aligned}$ Repeat arcs AC, BC and DE	M1 A3.2.1.0 A1 (5)
(b)	E.g. ABCADCBEDFGDEGHECA (18 nodes) Length: $344+74=418$	$\begin{align*} & \text { B1 } \\ & \text { B1 ft } \tag{2} \end{align*}$
(c)	One of $\mathrm{AB}(44), \mathrm{AD}(42)$ or $\mathrm{BD}(38)$ will still have to be repeated. $B D(38)$ is the shortest So start at E and finish at \mathbf{A}, route length now is $344+38=\mathbf{3 8 2}$	$\begin{align*} & \text { M1 } \\ & \text { A1 } \\ & \text { DA1 } \tag{3} \end{align*}$
		10 marks
Notes for Question 5		
a1M1: Three distinct pairings of their four odd nodes		
a1A1: Any one row correct including pairing and total		
a2A1: Any two rows correct including pairing and total		
a3A1: All three rows correct including pairing and total		
a4A1: CAO correct arcs identified AC, BC and DE. Accept ACB or AB via C (check to see if via C appears in working) but do not accept AB for this mark		
b1B1: Any correct route (checks: eighteen nodes (or seventeen arcs), the route starts and ends at A, pairings AC, BC and DE appear twice in the route and that every letter (A to H inclusive) appears at least once).		
b2B1 ft: correct answer of 418 or $344+$ their least out of a choice of at least two totals given in part (a)		
c1M1: Either identifies the need to repeat one pairing which does not include E (could list potential repeats) or identifies the need to repeat BD (or 38).		
is the least. To score the first two marks the candidate must make it clear that they need to repeat BD because it has the least weight of those pairings that do not include E.		
c2DA1: correct finishing point (A) and length (382). This mark is dependent on them identifying BD (38) as the repeat.		

Notes for Question 6

a1B1: CAO (must have 'boats', 'least', ' 90 ', must be talking about boats not cost)
b1B1: For a statement in context with either the ratio of coefficients correct (the 2 with the 2 -seater and the 3 with the 4 -seater) or inequality correct with correct numbers present but not in the correct ratio.
b2B1: Clear accurate correct statement in context.
c1B1: $x+y=90$ correctly drawn. Must pass within one small square of the points of intersection with the axes
c2B1: $3 y=2 x$ correctly drawn. Must pass within one small square of the origin and $(90,60)$.
c3B1: $y=x+30$ correctly drawn. Must pass within one small square of $(0,30)$ and $(60,90)$.
c4B1: Region, R, correctly labelled - not just implied by shading - must have scored all three previous marks in this part.
d1B1: CAO (isw if $100 x+300 y^{‘}$ simplified' to $k(100 x+300 y)$ but if $100 x+300 y$ not stated then $B 0$)
e1M1: Line must be correct to within one small square if extended from axis to axis OR attempting to find two vertices of their R (or the correct R) by either reading off their graph or using simultaneous equations and testing using their objective function.
e1A1: Correct objective line (same condition that the line must be correct to within one small square if extended from axis to axis) OR testing $(30,60)$ correctly (giving 21000) and testing $(54,36)$ correctly (giving 16 200).
e1B1: Correct point identified. (Condone in terms of x and y rather than in terms of boats.)
e2B1: CAO - condone lack of/incorrect units on the cost.

Examples for part (b) scoring B1 B1 (useful check: when $\mathrm{y}=2, \mathrm{x}=3,2,1, \ldots$ or when $\mathrm{x}=3, \mathrm{y}=2,3,4, \ldots$)

- Twice the number of 2 -seater boats must be at most three times the number of 4 -seater boats
- Three times the number of 4 -seater must be at least twice the number of 2 -seater boats
- For every three 2-seater boats there must be at least two 4-seater boats (or multiple of this ratio)
- For every two 4-seater boats there must be at most three 2-seater boats (or multiple of this ratio)
- At most 60% of the total boats are 2 -seater
- At least 40% of the total boats are 4 -seater

Examples of B 1 B 0 - in each case either the inequality is the correct way round OR the $\mathbf{2}$ is with $\mathbf{2}$-seater boats and the 3 is with the 4 -seater boats (accept multiples of 2 and 3) (useful numbers: when $y=2, x=3$, $4,5, \ldots$ when $\mathrm{x}=3, \mathrm{y}=2,1, \ldots$, when $\mathrm{y}=3, \mathrm{x}=2,1, \ldots$, when $\mathrm{x}=2, \mathrm{y}=3,4,5, \ldots$)

- Twice the number of 2-seater boats must be at least three times the number of 4 -seater boats
- Three times the number of 4 -seater must be at most twice the number of 2 -seater boats
- Three times the number of 2 -seater must be at least twice the number of 4 -seater boats
- For every three 2-seater boats there must be at most two 4 -seater boats (or multiple of this ratio)
- For every two 4-seater boats there must be at least three 2-seater boats (or multiple of this ratio)
- For every two 2-seater boats there must be at least three 4-seater boats (or multiple of this ratio)
- For every three 4-seater boats there must be at most two 2-seater boats (or multiple of this ratio)
- At least 60% of the total boats are 2 -seater
- At most 40% of the total boats are 4 -seater
- At least 60% of the total boats are 4 -seater
- At most 40% of the total boats are 2 -seater

Question Number	Scheme	Marks	
7.(a)	Float on $\mathrm{M}=42-26-8=8$ 2 day delay on P - no effect on the project completion date (float on P is 4) 2 day delay on Q - project finishes 2 days late (Q is a critical activity) $(172 / 53=3.245$, so $)$ a minimum of 4 workers needed	M1 A1	
		M1 A1	(4)
(b)		M1 A1	(2)
(c)(i)		B1	
(c)(ii)		B1	(2)
(d)			(1)

Notes for Question 7

Notes:

a1M1: All top boxes complete, values generally increasing left to right, condone one 'rogue' (if values do not increase from left to right then if one value is ignored and then the values do increase from left to right then this is considered to be only one rogue value)
a1A1: CAO.
a2M1: All bottom boxes complete, values generally decreasing right to left, condone one 'rogue'.
a2A1: CAO
b1M1: Correct calculation seen - all three numbers correct (ft), float 0 .
b1A1: Float correct (no ft on this mark)
c1B1: CAO
c2B1: CAO
d1B1: 4 with (or without) working scores this mark
e1M1: At least six activities added including six floats. Scheduling diagram scores M0.
e1A1: Six activities including their floats dealt with correctly.
e2M1: All remaining eleven activities including all eleven floats.
e2A1: CAO.
Examples for part (f):
Example 1: Activities H, I, J, K and L with $22<$ time <26 so 5 workers needed.
Example 2: At $10<$ time <14, F, D, E and H must be happening. Activity G must be happening $7<$ time <18 but its duration is 5 so it must also occur at some point in the interval $10<$ time <14 so 5 workers needed.
f1M1: Example 1: A statement with the correct number of workers (5) and the correct activities (H, I, J, K and L) with some mention of time, or
Example 2: A statement with the correct number of workers (5), the correct activities (F,D,E and H) with some mention of time and an indication that G must be happening with the other four activities at some point - give bod but e.g. 'at time 11 F, D, E, G and H must be happening' is M0). Scheduling the activities only scores M0.
f1A1: A correct, complete full statement with details of both time and activities. Candidates only need to give a time within the intervals stated.

Please note strict inequalities for the time. Allow e.g. on 'day 23 ' as equivalent to $22<$ time <23.
g1M1: Must have attempted both parts (d) and (f). Their higher lower bound chosen + attempt at a reason.

Allow for the M mark a reason which argues that e.g. the cascade chart gives a better lower bound (e.g. it takes into account exactly when activities must be taking place) or e.g. the calculation gives a better lower bound (e.g. as it takes into account the sum of all the activities) but without specifically answering the question of which of the two bounds is better. Give bod on an attempt at a reason.
g1A1: CAO plus a correct reason given. Acceptable reasons e.g. the cascade gives a larger value or the bound for the cascade shows that the project cannot be done with fewer workers, etc.

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA035685 Summer 2013
 Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

edexcel

Mark Scheme (Results)

J anuary 2014

Pearson Edexcel International
Advanced Level

Decision Mathematics 1 (WDM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014
Publications Code IA037666
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
-There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Notes for Question 1 continued

Alternatives to 1(b)
Middle left ascending

11	17	10	14	$\underline{8}$	13	6	3	15	7	pivot 8	M1
11	17	$\underline{10}$	14	13	15	$\underline{8}$	6	$\underline{4}$	7	pivots 10,4	AA1
11	17	$\underline{14}$	13	15	$\underline{10}$	$\underline{8}$	$\boxed{6}$	7	$\underline{4}$	pivots 14,6	
17	15	$\underline{14}$	$\underline{11}$	13	$\underline{10}$	$\underline{8}$	7	$\underline{6}$	$\underline{4}$	pivots $17,11,(7)$	2A1ft
$\underline{17}$	15	$\underline{14}$	13	$\underline{11}$	$\underline{10}$	$\underline{8}$	7	$\underline{6}$	$\underline{4}$	sort complete	3A1

Misreads for 1(b)
Middle right
Middle left

:

Question Number	Scheme	Marks
2. (a)	AB, BC, CF, CE; FG, AD; EH, HI	$\begin{align*} & \text { M1; 1A1; } \\ & \text { 2A1 } \tag{3} \end{align*}$
(b)	£191	B1 (1)
(c)(i)	$C F$, reject $C E, A B, F G ;\{A D$, reject $A C\}$, reject $D G$, \{reject $B E$, reject DF$\}$, EH , reject FH, HI (Note BC and EF are already in the tree)	$\begin{aligned} & \mathrm{M} 1 ; 1 \mathrm{~A} 1 \\ & 2 \mathrm{~A} 1 \end{aligned}$
(ii)	e.g. Prim cannot be used since with Prim the tree 'grows' in a connected fashion e.g. Kruskal can build its tree from disconnected fragments	B2,1,0
(d)	$£ 147$	B1 (1)
		10 marks
Notes		
a1M1: First four arcs (AB, BC, CF, CE) correctly chosen, or first five nodes (ABCFE) correctly chosen in order. If any rejections seen at any point then M1 (max) only. a1A1: First six arcs correctly chosen ($\mathrm{AB}, \mathrm{BC}, \mathrm{CF}, \mathrm{CE}, \mathrm{FG}, \mathrm{AD}$), or all nodes in order (ABCFEGDHI). a2A1: CSO (must be arcs). b1B1: CAO ci1M1: Kruskal's - first three arcs ($\mathrm{CF}, \mathrm{AB}, \mathrm{FG}$) correctly chosen and at least one rejection seen at some point. ci1A1: All arcs in tree selected correctly at correct time (CF, AB, FG, AD, EH, HI). Ignore any reference to BC and EF . ci2A1: CSO including all rejections correct and at the correct time. Ignore any reference to BC and EF. cii1B1: Partially correct answer - e.g. an indication that the arcs (BC and EF) are not connected or any mention of the tree being (initially) disconnected - so in both of these examples a pertinent correct statement is made but no explicit mention is made to either of the two minimum connector algorithms (i.e. no mention is made of Prim requiring arcs to be connected or that Kruksal can grow in a disconnected fashion). Give bod but for this mark there must be some mention of the 'unconnected' nature of the two initial arcs or problem. Note: describing how Kruskal can be adapted to find the MST scores no marks. cii2B1: Fully correct answer (so either Kruskal allows a tree to be formed from initially unconnected arcs or Prim requires the arcs/tree to be connected at all times - so linking the correct algorithm with the issues of this particular problem) - do not condone incorrect technical language for this mark (e.g. vertex for arc, point for vertex etc.)		

Question Number	Scheme	Marks

Notes for Question 2 continued
Misread: Starting at a node other than A scores M1 only - must have the first four arcs (or five nodes) correct.

Starting at	Minimum arcs required for M1 only	Nodes
A	AB, BC, CF, CE	ABCFE
B	AB, BC, CF, CE	BACFE
C	CF, CE, FG, BC	CFEGB
D	AD, AB, BC, CE	DABCE
E	CE, CF, FG, BC	ECFGB
F	CF, CE, FG, BC	FCEGB
G	FG, CF, CE, BC	GFCEB
H	EH, CE, CF, FG	HECFG
I	HI, EH, CE, CF	IHECF

Question Number	Scheme	Marks

Notes for Question 6 continued

$$
\begin{gathered}
x+y=500 \text { passes through }(0,500),(250,250),(500,0) \\
5 x+4 y=4000 \text { passes through }(0,1000),(400,500),(800,0) \\
y=2 x \text { passes through }(0,0),(200,400),(400,800) \\
y=x-250 \text { passes through }(250,0),(500,250),(700,450)
\end{gathered}
$$

a4B1: Region, R, labelled correctly - not just implied by shading - must have scored all three previous marks in this part.
b1M1: Must see simultaneous equations $(y=x-250$ and $5 x+4 y=4000)$ being used to find 'exact' point (or correct to 2 dp) - must get to $x=\cdots$ or $y=\cdots$.
b2M1: Must see simultaneous equations $(y=2 x$ and $5 x+4 y=4000)$ being used to find 'exact' point (or correct to 2 dp) - must get to $x=\cdots$ or $y=\cdots$.
b1A1: accept awrt $(555.56,305.56)$ exact answers are $\left(\frac{5000}{9}, \frac{2750}{9}\right)$ or $\left(555 \frac{5}{9}, 305 \frac{5}{9}\right)$
b2A1: accept awrt $(307.69,615.38)$ exact answers are $\left(\frac{4000}{13}, \frac{8000}{13}\right)$ or $\left(307 \frac{9}{13}, 615 \frac{5}{13}\right)$
SC: If no working shown and coordinates are given exactly or correct to 2 d p then award M0M0A1A1 (if one coordinate correct then M0M0A1A0 or M0M0A0A1 - award in order as given in b1A1 and b2A1)
b3M1: Evaluating C at both of their points and clearly selecting their optimal point b3A1: CAO, accept answer correct to 4 s.f. (either truncated or rounded) - so accept either the correct exact answer or an awrt to either 2638 or 2639 - must be clearly selected as optimal value
(exact values are $\frac{\mathbf{2 3 7 5 0}}{\mathbf{9}}$ or $\mathbf{2 6 3 8} \frac{8}{9}$ the other value is $\frac{48000}{13}$ or $3692 \frac{4}{13}$)
c1M1: Seeking to find $x+y$ at their optimal point.
c1A1: CAO, accept awrt 861.11 (exact value is $\frac{7750}{9}$ or $861 \frac{1}{9}$)

Question Number	Scheme	Marks

Notes for Question 7 continued

a2M1: All bottom boxes complete, values generally decreasing right to left, condone one rogue value.
Condone missing 0 or 29 for the M only.
a2A1: CAO
b1M1: Not a scheduling diagram. At least 9 activities including at least 4 floats.
b1A1: Critical activities dealt with correctly.
b2M1: All 12 activities including at least 7 floats.
b2A1: Non-critical activities dealt with correctly.
c1B1: A correct answer of 4, with the correct activities (IJFG) and some mention of time.
c2B1: A correct statement with details of time and activities. Note strict inequality on time - note that on day 18 is equivalent to $17<$ time <18.
d1M1: Not a cascade chart. 4 'workers' used at most. At least 7 activities.
d1A1: ABCIJK correct. A - 7; B - 8: C $-8 ; \mathrm{I}-9 ; \mathrm{J}-9 ; \mathrm{K}-5$. B completed by its late finish time (9). d2A1: 4 workers. All 12 activities present (just once). Condone one error either precedence, or activity length, on activities D, E, F, G, H, L.
d3A1: 4 workers. All 12 activities present (just once). No errors on activities D, E, F, G, H, L

Activity	Duration	I.P.A.		Activity	Duration	I.P.A.
A	7	-		\mathbf{G}	$\mathbf{3}$	C D
B	8	-		\mathbf{H}	$\mathbf{4}$	A G
C	8	A		I	9	C D E
D	$\mathbf{6}$	\mathbf{B}		J	9	C D E
E	$\mathbf{5}$	\mathbf{B}		K	5	F H I J
F	$\mathbf{1 0}$	\mathbf{B}		\mathbf{L}	$\mathbf{4}$	F J

Question Number	Scheme	Marks
8.	Minimise $(C)=660 x+600 y$ Subject to: $\begin{aligned} & 20 x+50 y \geq 15000 \Rightarrow 2 x+5 y \geq 1500 \\ & \frac{2}{5}(x+y) \leq x \leq \frac{3}{5}(x+y) \end{aligned}$ Which simplifies to $2 y \leq 3 x$ and $2 x \leq 3 y$ or equivalent. $(x, y \geq 0)$	B1 1M1 1A1 2M1 2A1, 3A1 6 marks
Notes		
1B1: CAO Expression correct and 'minimise'. Accept working in $£$'s $(\mathrm{C})=6.6 x+6 y$ 1M1: Condone incorrect inequality (but not equals) sign seen here. 1A1: CAO Must have $2 x, 5 y$ and 1500 . 2M1: Correct method, dealing with both 40% and 60% of total items - need to see both $\frac{2}{5}(x+$ $y)$ and $\frac{3}{5}(x+y)$ as part of an inequality (not an equation). 2A1: CAO for the 40% inequality - accept strict inequality 3A1: CAO for the 60% inequality - accept strict inequality - may be combined into one inequality SC: if 2A0 and 3A0 then award SCA1A0 for either $k(2 y) \leq k(3 x)$ or $k(2 x) \leq k(3 y)$ for any positive integer k.		

edexcel

Mark Scheme (Results)
Summer 2014

Pearson Edexcel International A Level in Decision Mathematics 1 (WDM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code IA038488
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL I AL MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- - or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

a1M1: Quick sort - pivots, p, selected and first pass gives <p, p, >p. If only choosing one pivot per iteration M1 only.
a1A1: First pass correct, next two pivots chosen correctly for second pass.
a2A1ft: Second and third passes corrrect (follow through from their first pass and choice of pivots) and next pivot(s) chosen consistently for fourth pass.
a3A1: CSO and 'sort complete' this could be shown either by a 'stop' statement or final list rewritten or using each item as a pivot.
b1M1: Choosing middle right pivot (choosing middle left is M0) + discarding/retaining half the list. M1 only for an 'incorrect' list - allow 1 error (e.g. two letter interchanged) or 1 omission or 1 extra. b1A1: First and second passes correct i.e. $5^{\text {th }}$ and $8^{\text {th }}$ items for a correct list and second half rejected (no sticky pivots).
b2A1: CSO Third pass correct i.e. $7^{\text {th }}$ item for a correct list + "found" (accept 'found', 'located', 'stop', etc. but not just the letter; must be convinced that P has been located). The number of iterations does not need to be stated explicitly.
Part (c): Candidates who consider maximum number of values at the start of each iteration:

- M1 for at least $641,320,160,80, \ldots$ or embedded in a calculation e.g. $[641+1] / 2=321$, $[320+1] / 2=161,[160+1] / 2=81,[80+1] / 2=\ldots$
- M1 A1 $641,320,160,80,40,20,10,5,2,1$ so 10 iterations

Candidates who consider maximum number of values at the end of each iteration:

- M1 for at least 320, 160, 80, ...
- M1 A1 320, 160, 80, 40, 20, 10, 5, 2, 1 so 10 iterations (so 9 iterations is A0).

Question Number	Scheme	Marks

Other numerical arguments

(The maximum number of iterations is the least integer value of n such that)

- M1 $2^{n}>641$ then either taking logs of both sides and attempt to solve for n (accept $2^{n}=641$) or stating $n=9.32 \ldots$ (answer given correct to 1 dp).
- M1 A1 the above with $n=10$ (no errors if calculation seen) (allow recovery from equals).
- M1 those candidates who state $2^{n}>641$ and state $n=10$ with no working unless 2^{9} also considered.
- $\quad \mathbf{M 1} \log _{2} 641=\ldots$
- M1 A1 $\ldots=9.32 \ldots$ (answer given correctly to 1 dp) and hence 10.
- $\frac{641}{2^{n}}$ considered with $n=10$ is M1 showing explicitly that $n=10$ is the first value that gives value less that 1 gets $\mathbf{A 1}$ (it is not sufficient to just say that $\frac{641}{2^{10}}$ is less than 1 either $\frac{641}{1024}$ or 0.625... (correct to 1 dp) must be seen).
- Candidates who say that halving 641 ten times gives a value less than 1 (or equal to 1) M1 only. Accept $=1$ as when candidates talk about halving/dividing by 2 it is not always clear if they mean half the list or half the numbers in the list. However if the candidate explicitly shows that halving 641 ten times gives a value less than 1 which must be given either exactly or correct to 1 dp then $\mathbf{A 1}$.
- An answer of 10 with no working M0

Middle left for (a)
Pivots

M	S	Q	C	\mathbf{E}	P	B	F	O	E
\mathbf{C}	B	E	M	S	\mathbf{Q}	P	F	O	C,Q
\mathbf{B}	C	E	M	\mathbf{P}	F	O	Q	S	(B), P, (S)
B	C	E	M	F	O	P	Q	S	F
B	C	E	F	\mathbf{M}	O	P	Q	S	M
B	C	E	F	\mathbf{M}	O	P	Q	S	(O)

Sort complete

Question Number	Scheme	Marks
2. (a)	(i) Complete matching: A matching where every member of set X is paired with a single member of set Y and vice-versa. (ii) Difference: A maximal matching is where the number of edges is as large as possible without necessarily pairing all vertices. A complete matching pairs all vertices.	$\begin{array}{ll} \text { B1 } \\ \text { B1 } \\ \text { B1 } & \text { (3) } \end{array}$
(b)	E.g. Alternating path: $\mathrm{C}-\mathrm{L}=\mathrm{A}-\mathrm{O}$ Change status: $\mathrm{C}=\mathrm{L}-\mathrm{A}=\mathrm{O}$ Improved matching: $\mathrm{A}=\mathrm{O}, \mathrm{B}=\mathrm{M}, \mathrm{C}=\mathrm{L}, \mathrm{E}=\mathrm{N}, \mathrm{F}=\mathrm{P}$	M1 A1 A1 (3)
(c)	E.g. Alternating path: $\mathrm{D}-\mathrm{M}=\mathrm{B}-\mathrm{K}$ Change status: $\mathrm{D}=\mathrm{M}-\mathrm{B}=\mathrm{K}$ Complete matching: $\mathrm{A}=\mathrm{O}, \mathrm{B}=\mathrm{K}, \mathrm{C}=\mathrm{L}, \mathrm{D}=\mathrm{M}, \mathrm{E}=\mathrm{N}, \mathrm{F}=\mathrm{P}$	M1 A1 A1 (3) (9 marks)

a1B1: Complete: pairing or one to one.
a2B1: Complete: all elements from one set with all elements of the other ('all' and 'set' must be mentioned at least once).
a3B1: Difference: all compared to at most. Give bod but must mention 'all' compared to 'at most'. b1M1: An alternating path from C to O or K (or vice versa).
b1A1: CAO - a correct path including change status either stated or shown. Chosen path clear.
b2A1: CAO must follow from the correct stated path. Accept on a clear diagram (with five arcs only).
c1M1: An alternating path from D to K or O , whichever one (of O or K) they didn't use in (b) (or vice versa).
c1A1: CAO - a correct path including change status either stated or shown. Chosen path clear.
c2A1: CAO must follow from two correct stated paths (so both previous M marks must have been awarded). Accept on a clear diagram (with six arcs only).

Improved matching:

Path 1	A	B	C	D	E	F
C-L-A-O	O	M	L		N	P
C-L-A-K	K	M	L		N	P

Complete matching:

Path 1	Path 2	A	B	C	D	E	F
C-L-A-O	D-M-B-K	O	K	L	M	N	P
C-L-A-O	D-N-E-K	O	M	L	N	K	P
C-L-A-K	D-M-B-K-A-O	O	K	L	M	N	P
C-L-A-K	D-N-E-K-A-O	O	M	L	N	K	P

Question Number
3. (a)

Question Number	Scheme	Marks
4. (a)	E.g. (any three) - Kruskal starts with the shortest arc, Prim starts with any node. - It is necessary to check for cycles when using Kruskal (or it is not necessary to check for cycles when using Prim). - When using Prim the 'growing' tree is always connected. - When using Kruskal arcs are considered in ascending order of weight. - Prim can be used when the network is given in matrix form. - Prim add nodes to the growing tree, Kruskal adds arcs.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$
(b)	DE, EB, BL, LF, BH; HG, GA, ES; SP, MP, AR	M1 A1 A1
(c)	$\begin{aligned} & \text { ES + LG = 24 + } 15=39 \text { smallest } \\ & \text { EL + S(FL)G }=17+55=72 \\ & E(L) G+L(F) S=32+40=72 \end{aligned}$ Repeat ES and LG	M1 A1 (2 correct) A1 (3 correct) A1
(d)	The caretaker should repeat EL(17) as it is the minimum pair not including G (ES: 24, EL: 17, LS: 40) Therefore he should (start at G and) finish at S Length of route: $341+17=358$ (metres)	M1 A1 A1 (3) (13 marks)
Notes for Question 4		

a1B1: Any one correct difference.
a2B1: Any two correct differences.
a3B1: Any three correct differences.
b1M1: First five arcs correctly chosen in order (do not accept weights) or first six nodes correctly chosen in order. \{D,E,B,L,F,H\}. If any rejections seen at any point then M1 (max) only.
b1A1: First eight arcs correctly chosen in order or all nodes correctly chosen in order.
\{D,E,B,L,F,H,G,A,S,P,M,R\}.
b2A1: CSO - all arcs correctly stated.
Misread: Starting at a node other than D scores M1 only - must have the first five arcs (or six nodes) correct (and in the correct order).
c1M1: Three pairings of the correct four odd nodes.
c1A1: Two rows correct including pairing and total.
c2A1: Three rows correct including pairing and total.
c3A1: (Repeat) ES and LG.
d1M1: Identified the need to repeat one path of the three (ES, EL, LS) which does not include G (maybe implicit) or listing of possible repeats - if M0 in (c) must state all three possible paths. Stating any path (ES, EL, LS) is sufficient for this mark.
d1A1: Identifies EL as the least of those paths not including G. They have to explicitly state that EL is the least path that does not include G or they can list all three paths and then say EL is the least.
d2A1: CAO - finish at S and length of route 358.

Question Number	Scheme	Marks
5. (a)	$3 x+5 y \leq 1000$	B1 (1)
(b)		B1 $3 x+5 y=1000$ B1 $y=2 x$ B1 $4 y-x=210$ B1 R (4)
(c)	Objective is to maximise ($\mathrm{P}=) x+y$	B1 (1)
(d)	$(A=)(30,60),(B=)\left(76 \frac{12}{13}, 153 \frac{11}{13}\right),(C=)\left(173 \frac{9}{17}, 95 \frac{15}{17}\right)$ At A, P = 90 At $B, P=230 \frac{10}{13}$ At C, $\mathrm{P}=269 \frac{7}{17}$ So C is optimal point Testing integer solutions around C, $x=173$ and $y=96$ is optimal integer solution, so they should make 173 soft toys and 96 craft sets	M1 A1 A1 M1 A1 M1 A1 (7) (13 marks)

Notes for Question 5

a1B1: CAO
b1B1: $3 x+5 y=1000$ passing through one small square of $(0,200),(200,80),\left(333 \frac{1}{3}, 0\right)$.
b2B1: $y=2 x$ passing through one small square of $(0,0),(100,200),(150,300)$.
b3B1: $4 y-x=210$ passing through one small square of $(0,52.5)$, $(200,102.5)$, $(400,152.5)$.
b4B1: Region, R, correctly labelled - not just implied by shading - must have scored all three previous marks in this part.
cB1: CAO - correct expression.
d1M1: Attempt to solve two of the correct equations simultaneously, up to $x=\ldots$ or $y=\ldots$
d1A1: At least 1 correct R vertex found correct to at least 2dp (rounded or truncated) - (30, 60), (76.923...,
153.846...), (173.529..., 95.705...). If any vertex is stated correctly (with or without working) then this scores M1A1.
d2A1: All correct R vertices found exactly. Must be working for determining points B and C.
B $\left(\frac{1000}{13}, \frac{2000}{13}\right), \mathrm{C}\left(\frac{2950}{17}, \frac{1630}{17}\right)$.
d2M1: Evaluating the correct objective function at at least two of their points for their feasible region allow this mark if vertices have been read off their graph. Condone for this M mark those candidates who state their coordinates and then test the 'nearest' integer values. E.g. if they state $(76.9,153.8)$ then allow for the M mark those that test either one of $(76,153)$, $(77,153),(76,154)$ or $(77,154)$ only - maybe implied by their value for P .
d3A1: All three correct P values either given exactly $\left\{90, \frac{3000}{13}, \frac{4580}{17}\right\}$ or to at least 1 dp (rounded or truncated) $\{90,230.769 \ldots, 269.411 \ldots\}$. They must be testing the exact coordinates for this mark. d3M1: Testing the correct inequalities for at least two of (173, 95), (173, 96), (174, 95), (174, 96). d4A1: CSO (all previous marks in (d) must have been awarded) accept $x=173$ and $y=96$ or as coordinates.

| Question |
| :--- | :--- | :--- |

Question Number	Scheme	Marks
7.(a)		M1 A1 A1 (3)
(b)	ADFJ Length 22	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & \text { (2) } \\ \hline \end{array}$
(c)		M1 A1 M1 A1
(d)	i) D \& E ii) J \& G	$\begin{array}{ll} \hline \text { B1 } \\ \text { B1 } & \\ \hline \end{array}$
(e)	e.g. Worker 2 \square	M1 A1 A1 (3) (14 marks)

Notes for Question 7

a1M1: All top boxes and all bottom boxes completed. Values generally increasing from left to right (for top boxes), and values generally decreasing from right to left (for bottom boxes). Condone missing 0 or 22 for M only (for bottom boxes). Condone one rogue value in top boxes and one rogue value in bottom boxes. a1A1: CAO for top boxes.
a2A1: CAO for bottom boxes.
b1B1: CAO path.
b2B1: CAO length.
c1M1: At least 8 different activities including at least 4 floats.
c1A1: Critical activities dealt with correctly.
c2M1: The correct 11 activities (only once) including at least 7 floats.
c2A1: Non-critical activities dealt with correctly.
d1B1: CAO
d2B1: CAO
e1M1: 2 lines for 2 workers or 3 lines for 3 workers, all 11 activities present (just once) with time ≤ 25.
e1A1: 2 workers. Condone one error either precedence or activity length. Time must be 25 .
e2A1: 2 workers. No errors.

Activity	Duration	IPA
A	4	-
B	3	-
C	3	A, B
D	7	A, B
E	5	B
F	4	D, E
G	6	D, E
H	2	C
I	4	C
J	7	F, H
K	4	F, H, I

路

[^1]
edexcel

Mark Scheme (Results)
Summer 2014
Pearson Edexcel GCE in Decision Mathematics 1R (6689/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038492
All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- [The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks

Sorting list into ascending order in (b)

- If the candidate sorts the list into ascending order and reverse the list in (b) then they can score full marks in (b).
- If the list is not reversed in (b) then mark as a misread (so remove the last two A marks earned in (b)). If the list is reversed at the start of (c) but not in (b) then still treat this as a misread. If the list is still in ascending order in (c) award no marks for first fit increasing. If the candidate says that the list needs reversing in (b) but doesn't actually show the reversed list in (b) then remove the final A mark in (b).

Misreads

- If they have misread a number at the start of (a), so genuinely miscopied a number (before starting the question) then please mark the whole question as a misread (so remove the final two A/B marks earned).
- If they make an error during the quick sort then mark this as an error. They can still earn the \mathbf{M} mark in (c) (see SC above).

Middle left

31	10	38	45	19	47	35	28	12
31	38	45	47	35	28	19	10	12
47	45	31	38	35	28	19	12	10
47	45	38	31	35	28	19	12	10
47	45	38	35	31	28	19	12	10
47	45	38	35	31	28	19	12	10

Pivot 19
Pivot 45, 10
M1 A1
Pivot (47), 38, (12)
Pivot 35
A1ft
Pivot 31
list in order A1cso

Ascending order (middle right)

31	10	38	45	19	47	35	28	12	Pivot 19	
10	12	19	31	38	45	47	35	28	Pivot 12, 47	M1 A1
10	12	19	31	38	45	35	28	47	Pivot (10), 45	
10	12	19	31	38	35	28	45	47	Pivot 35	A1ft
10	12	19	31	28	35	38	45	47	Pivot 28, (38)	
10	12	19	28	31	35	38	45	47	list in order	A1cso
Ascending order (middle left)										
31	10	38	45	19	47	35	28	12	Pivot 19	
10	12	19	31	38	45	47	35	28	Pivot 10, 45	M1 A1
10	12	19	31	38	35	28	45	47	Pivot (12), 38, (47)	
10	12	19	31	35	28	38	45	47	Pivot 35	A1ft
10	12	19	31	28	35	38	45	47	Pivot 31	
10	12	19	28	31	35	38	45	47	list in order	A1cso

Question Number	Scheme	Marks	
2. (a)	e. g. Activities 1 and 3 both can only be done by Hugo	B2, 1, 0	(2)
(b)	J to 1 should be chosen e. g. J to 1 would release H to do 3 . e. g. if H is retrained then tasks 1 and 3 can still only be done by H .	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	(2)
(c)	$\mathrm{A}-2=\mathrm{P}-4=\mathrm{C}-5=\mathrm{J}-1=\mathrm{H}-3$ Change status $\mathrm{A}=2-\mathrm{P}=4-\mathrm{C}=5-\mathrm{J}=1-\mathrm{H}=3$ Complete matching: $\mathrm{A}=2, \mathrm{C}=5, \mathrm{H}=3, \mathrm{~J}=1$ and $\mathrm{P}=4$	M1 A1 A1 7 marks	
Notes for Question 2			
a1B1: A statement with the correct employees and tasks that attempts a reason why a complete matching is not possible. BOD gets the mark here. Note e.g. 'Hugo is the only one who can do both 1 and 3' or 'Hugo can only do 1 and 3' are both B1 only. a2B1: Fully correct, including all pertinent names and activities. No incorrect information given. b1M1: J to 1 selected with a reason given. One of $\mathrm{H}, 1$ or 3 must be mentioned. b1A1: A correct reason given - must explicitly explain why J with 1 allows a complete matching to occur e.g. H can now do 3, or the candidate explains that if Hugo is re-trained there are still two tasks, 1 and 3 , that can only be done by one employee, H . c1M1: An alternating path from A to 3 (or vice versa). c1A1: CAO - a correct path including change status either stated or shown. Chosen path clear. c2A1: CAO must follow from the correct stated path. Accept on a clear diagram (with five arcs only).			

Question Number	Scheme	Marks
5. (a)		B1 B1 B1 B1 R (4)
(b)	Drawing an objective line accept reciprocal gradient correct objective line minimum length equivalent to $(0,10)$ to $(15,0)$ V labelled correctly	M1 A1 A1 (3)
(c)	$\mathrm{V}\left(49 \frac{7}{17}, 61 \frac{13}{17}\right)$	M1 A1(2)
(d)	Testing the correct inequalities for points with integer coordinates $(50,61)$	M1 A1 (2) 11 marks

Notes for Question 5

In (a) lines must pass through one small square of the points stated:

$$
\begin{aligned}
7 x+8 y & =840 \text { passes through }(0,105),(40,70),(80,35),(120,0) \\
4 y & =5 x \text { passes through }(0,0),(40,50),(80,100) \\
5 y & =3 x \text { passes through }(0,0),(50,30),(100,60)
\end{aligned}
$$

a1B1: One line other than $x=25$ or $y=25$ correctly drawn.
a2B1: Two lines other than $x=25$ or $y=25$ correctly drawn.
a3B1: All five lines correctly drawn.
a4B1: Region, R, correctly labelled - not just implied by shading - must have scored all three previous marks in this part.
b1M1: Drawing the correct objective line or its reciprocal. Line must be correct to within one small square if extended from axis to axis.
b1A1: Correct objective line.
b2A1: V labelled clearly on their graph. This mark is dependent on the correct five line segments that define the boundary of the feasible region.
cM1: Simultaneous equation being used to find their V (but not from $x=25$ or $y=25$). Must get to x $=\ldots$ and $y=\ldots$
cA1: Correct coordinates of V stated exactly as $\left(\frac{840}{17}, \frac{1050}{17}\right)$ or $\left(49 \frac{7}{17}, 61 \frac{13}{17}\right)$. If the correct coordinates are stated exactly with no working then this scores M1A0.
d1M1: Testing the correct inequalities for at least three of (49, 61), (49, 62), (50, 61), (50, 62).
d1A1: CAO $(50,61)$.

Question Number		Marks
6. (i)		

Notes for Question 7

a1M1: All top boxes complete, values generally increasing left to right, condone one rogue.
a1A1: CAO
a2M1: All bottom boxes complete, values generally decreasing right to left, condone one rogue.
Condone missing 0 or 22 for the M only.
a2A1: CAO
b1M1: Correct calculation for their activity D seen - their three numbers correct. Final value must be non-negative.
b1A1: CAO - no ft on this mark. The answer of 4 (with no working) scores no marks.
c1M1: Attempt to find lower bound: [42-62 / their finish time].
c1A1: CAO - correct calculation seen then 3 . No working scores M0 A0.
d1M1: Not a cascade chart. 3 'workers' used at most and at least 7 activities placed.
d2A1: 3 workers. All 11 activities present (just once). Condone one error either precedence, time interval or activity length.
d3A1: 3 workers. All 11 activities present (just once). No errors.
For reference:

Activity	Duration	Time interval	IPA
A	4	$0-7$	-
B	5	$0-5$	-
C	3	$0-5$	-
D	4	$4-12$	A
E	2	$4-9$	A
F	3	$5-9$	B
G	4	$5-9$	B, C
H	6	$9-15$	E, F, G
I	4	$9-15$	G
J	10	$9-22$	D, E, F
K	7	$15-22$	H, I

Question Number	Scheme	Marks
8.	Minimise $C=3 x+2 y$ Subject to: $\begin{aligned} & x+y \geq 1000 \\ & \frac{1}{4}(x+y) \leq x, \text { simplifies to } y \leq 3 x \\ & 2 x \leq y \\ & (x, y \geq 0) \end{aligned}$	B1 B1 M1 A1 M1 A1 6 marks
Notes for Question 8		
1B1: CAO - expression correct and 'minimise'. 2B1: CAO 1M1: Correct method - must see $\frac{1}{4}(x+y) \llbracket x$ where \llbracket is any inequality or $=$. The bracket must be present or implied by later working. 1A1: CAO - simplified - answer must have integer coefficients. 2M1: Correct method - one of $2 x ■ y$ or $x \llbracket 2 y$ where \llbracket is any inequality or $=$. 2A1: CAO - answer must have integer coefficient.		

,

$P M T$

edexcel ${ }^{\text {\#ixi }}$

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Decision Mathematics 1 (6689/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014

Publications Code UA038482
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- - or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

| Question
 Number | | Marks |
| :--- | :--- | :--- | :--- |
| 1.(a) | AG, DG, AF; AE BG; CD | |

Question Number	Scheme	Marks
2. (a)		M1 A1 A1 A1 A1
(b)	$1^{\text {st }}$ dummy - A and B both must be able to be described uniquely in terms of the events at each end. $2^{\text {nd }}$ dummy $-I$ depends on D only but J depends on D and G .	B1 B1 (2) 7 marks

Notes for Question 2

Throughout part (a) condone lack of numbered events throughout - also 'dealt with correctly' means that the activity starts from the correct event (but not necessarily finishing at the correct event) e.g. 'H dealt with correctly' requires F and E leading into the same event and H starting from that event (but not necessarily H leading into K). Activity on node is M0.
a1M1: 7 activities and one dummy placed.
a1A1: One start + activities A, B, C and E dealt with correctly.
a2A1: Activities D, F, G, H and K and the $1^{\text {st }}$ dummy dealt with correctly.
a3A1: Activities I and J and the $2^{\text {nd }}$ dummy dealt with correctly.
a4A1: CSO (all four previous marks must have been awarded) - all arrows present and correctly placed with one finish - condone lack of arrows for the first four marks only. No 'extra' activities.

Note that another valid solution would be the dummy going from event 3 to event 2 and D, G and F coming out of event 2 . Or the candidate could start with a dummy from event 1 to ensure the uniqueness of activities A and B.
b1B1: CAO - with no incorrect terminology (e.g. event for activity) - please note that e.g. 'so that activities can be defined uniquely' is not sufficient to earn this mark. There must be a mention of describing activities uniquely in terms of the events at each end. However give bod on statements that imply that an activity begins and ends at the same event e.g. 'so that activites do not have the same start and finish' is sufficient for B1.
b2B1: CAO - all relevant activities must be referred to - so activities D, G, I and J must all be mentioned for this mark.

Ques Num	Scheme	Marks
3. (a)	$\begin{aligned} & \text { D(A)E }+\mathrm{F}(\mathrm{~J}) \mathrm{K}=35+15=50^{*} \\ & \mathrm{D}(\mathrm{HJ}) \mathrm{F}+\mathrm{E}(\mathrm{FJ}) \mathrm{K}=24+40=64 \\ & \mathrm{D}(\mathrm{HJ}) \mathrm{K}+\mathrm{EF}=33+25=58 \end{aligned}$ Arcs DA, AE, FJ, JK will be traversed twice Route length $=451+50=501(\mathrm{~km})$	M1 A1 (2 correct) A1 (3 correct) A1 A1ft
(b)	Vertex J would appear 3 times in the shortes	B1 (1)
(c)	We only have to repeat one pair of odd vertices which does not include vertex K $(\mathrm{DE}=35, \mathrm{DF}=24, \mathrm{EF}=25)$ DF is the smallest of the three so repeat DF ($\mathrm{DH}, \mathrm{HJ}, \mathrm{JF}$) and therefore the other hut should be built at E Route e.g. EADEHDHJFBEFCGFJHLGKJLMK The length of the route is $475(\mathrm{~km})$	A1 A1 A1ft (4) 10 marks
Notes for Question 3		
a1M1: Three distinct pairings of the correct four odd nodes. a1A1: Any two rows correct including pairings and totals. a2A1: All three rows correct including pairings and totals. a3A1: CAO correct arcs clearly (not just in their working) stated: DA, AE, FJ, JK. Accept DAE, FJK or DE via A, FK via J. Do not accept DE, FK. a4A1ft: The correct answer of 501 or 451 + their smallest repeat out of a choice of at least two totals seen. b1B1: CAO (3) c1M1: Identifies the need to repeat one pairing not including K (maybe implicit) or listing of possible repeats - this mark is dependent on scoring the M mark in (a). Stating any pairing that does not include K is sufficient for this mark. c1A1: Identifies DF as the least of those pairings not including K and E as the position of the other hut. They have to explicitly state that DF is the least pairing that does not include K or they can list all three pairings ($\mathrm{DE}, \mathrm{DF}, \mathrm{EF}$) and then say DF is the smallest as this implicitly implies that they are considering only pairings that do not include K . c2A1: Any correct route (checks: starts at E and finishes at K (or vice-versa), 24 vertices (D, G, L appear twice and E, F, H, J appear three times and every other letter appears at least once). c3A1ft: Correct answer of 475 or $451+$ their DF (i.e. the least pairing that does not include K - so their smallest of DE, DF or EF).		

Question Number	Scheme	Marks
4. (a) (b)		B1 B1
(c)	Alternating path either $\mathrm{N}-\mathrm{V}=\mathrm{F}-\mathrm{T}=\mathrm{A}-\mathrm{C}=\mathrm{J}-\mathrm{D}$ or $\mathrm{P}-\mathrm{V}=\mathrm{F}-\mathrm{T}=\mathrm{A}-\mathrm{C}=\mathrm{J}-\mathrm{D}$ Change status $\mathrm{N}=\mathrm{V}-\mathrm{F}=\mathrm{T}-\mathrm{A}=\mathrm{C}-\mathrm{J}=\mathrm{D}$ or $\mathrm{P}=\mathrm{V}-\mathrm{F}=\mathrm{T}-\mathrm{A}=\mathrm{C}-\mathrm{J}=\mathrm{D}$ Improved matching $\mathrm{A}=\mathrm{C}, \mathrm{F}=\mathrm{T}, \mathrm{J}=\mathrm{D}, \mathrm{N}=\mathrm{V}$, (P unmatched), $\mathrm{R}=\mathrm{G}$ or $\mathrm{A}=\mathrm{C}, \mathrm{F}=\mathrm{T}, \mathrm{J}=\mathrm{D},(\mathrm{N}$ unmatched), $\mathrm{P}=\mathrm{V}, \mathrm{R}=\mathrm{G}$	M1 A1 A1 (3)
(d)	e.g. both K and G can only be allocated to R e.g. N and P can only be allocated to V	B1 (1)
(e)	Alternating path $\mathrm{P}-\mathrm{D}=\mathrm{J}-\mathrm{C}=\mathrm{A}-\mathrm{T}=\mathrm{F}-\mathrm{G}=\mathrm{R}-\mathrm{K}$ or $\mathrm{N}-\mathrm{V}=\mathrm{P}-\mathrm{D}=\mathrm{J}-\mathrm{C}=\mathrm{A}-\mathrm{T}=\mathrm{F}-\mathrm{G}=\mathrm{R}-\mathrm{K}$ Change status $\mathrm{P}=\mathrm{D}-\mathrm{J}=\mathrm{C}-\mathrm{A}=\mathrm{T}-\mathrm{F}=\mathrm{G}-\mathrm{R}=\mathrm{K}$ or $\mathrm{N}=\mathrm{V}-\mathrm{P}=\mathrm{D}-\mathrm{J}=\mathrm{C}-\mathrm{A}=\mathrm{T}-\mathrm{F}=\mathrm{G}-\mathrm{R}=\mathrm{K}$ Complete matching $\mathrm{A}=\mathrm{T}, \mathrm{F}=\mathrm{G}, \mathrm{J}=\mathrm{C}, \mathrm{N}=\mathrm{V}, \mathrm{P}=\mathrm{D}, \mathrm{R}=\mathrm{K}$	M1 A1 A1 (3) 9 marks

Notes for Question 4

a1B1: CAO - condone the addition of an arc from F to G and/or one from P to D only.
b1B1: CAO - these four arcs and no additional ones.
c1M1: An alternating path (e.g. letter $1^{\text {st }}$ set - letter $2^{\text {nd }}$ set - letter $1^{\text {st }}$ set $-\ldots$) from either N or P to $\mathrm{D}-$ or vice versa.
c1A1: CAO - a correct path including change status either stated (only accept 'change (of) status’ or 'c.s.') or shown (all symbols e.g. (...-..=...-...) interchanged (...=..-...=...). Chosen path clear.
e.g.

- $\mathrm{N}-\mathrm{V}=\mathrm{F}-\mathrm{T}=\mathrm{A}-\mathrm{C}=\mathrm{J}-\mathrm{D}$ $\mathrm{N}=\mathrm{V}-\mathrm{F}=\mathrm{T}-\mathrm{A}=\mathrm{C}-\mathrm{J}=\mathrm{D} \quad$ Scores M1A1 (change status shown)
- change status $\mathrm{N}-\mathrm{V}=\mathrm{F}-\mathrm{T}=\mathrm{A}-\mathrm{C}=\mathrm{J}-\mathrm{D}$ Scores M1A1 (change status stated)
- c.s. $\mathrm{N}-\mathrm{V}=\mathrm{F}-\mathrm{T}=\mathrm{A}-\mathrm{C}=\mathrm{J}-\mathrm{D}$ Scores M1A1 (change status stated)
- $\mathrm{N}-\mathrm{V}=\mathrm{F}-\mathrm{T}=\mathrm{A}-\mathrm{C}=\mathrm{J}-\mathrm{D}$ c.s. $\mathrm{N}=\mathrm{V}-\mathrm{F}=\mathrm{T}-\mathrm{A}=\mathrm{C}-\mathrm{J}=\mathrm{D} \quad$ Scores M1A1 (change status stated and shown)
- $\mathrm{N}-\mathrm{V}=\mathrm{F}-\mathrm{T}=\mathrm{A}-\mathrm{C}=\mathrm{J}-\mathrm{D}$
$\mathrm{N}=\mathrm{V}, \mathrm{F}=\mathrm{T}, \mathrm{A}=\mathrm{C}, \mathrm{J}=\mathrm{D}, \ldots \quad$ Scores M1A0 (no change status stated or shown)
c2A1: CAO must follow from the correct stated path. Accept on a clear diagram (with five arcs only). Condone lack of P or N being stated as unmatched.
d1B1: CAO (completely correct statement) - do not accept a general statement (specific nodes must be referred to). Note that these need to be checked carefully e.g. V can only be allocated to N and P is B 0 .
e1M1: A second alternating path from either N (if P used in (c)) or P (if N used in (c)) to K (or vice-versa) e1A1: CAO including change status (stated or shown), chosen path clear.
e2A1: CAO must follow from two correct stated paths (so both previous M marks must have been awarded). Accept on a clear diagram (with six arcs only).

Question Number	Scheme		Marks
5. (a)			M1 A1 (PBCAW) A1 (HMS) A1ft (LY)
	Shortest route: P - B - A - S - L - Y Length: 89 (miles)		B1 B1ft
(b)	Shortest route: $\mathrm{P}-\mathrm{C}-\mathrm{H}-\mathrm{M}-\mathrm{L}-\mathrm{Y}$ Difference in routes: $(41+40+21)-89=13$ (miles)		B1 M1 A1 (3) 9 marks

Notes for Question 5

In part (a) it is important that all values at each node are checked very carefully - the order of the working values must be correct for the corresponding A mark to be awarded e.g. at L the working values must be 706968 - in that order ($\mathbf{7 0} 6869$ is incorrect).
The values in brackets in the working values at P, A, H and L can be ignored but if a candidate does have additional values at these nodes then they must be these ones only. Penalise any other/incorrect working values with the corresponding A mark. It is also important that the order of labelling is checked carefully - some candidates start with a working value of 0 at P (rather than 1) - this is fine. Also the order of labelling must be a strictly increasing sequence - so $1,2,3,3,4, \ldots$ will be penalised once (see notes below) but $1,2,3,5,6, \ldots$ is fine.
a1M1: A larger value replaced by smaller value at least once in the working values at either A or M or L or S or Y.
a1A1: All values in P, B, C, A and W correct. The working values at A must be in the correct order. Condone lack of 0 in P's working value. Ignore additional working value of 30 at the end of A (may read 20 1630 - rather than 2016 - at A).
a2A1: All values in H, M and S correct and the working values in the correct order. Penalise order of labelling only once per question (H, M and S labelled in that order and H must be labelled after P, B, C, A and W). Ignore additional working value of 33 at the end of H (may read 27 33).
a3A1ft: All values in L and Y correct on the follow through and the working values in the correct order. Penalise order of labelling only once per question (L and Y labelled in that order and L labelled after all other nodes). Ignore additional working value of 81 at L - may read 70698168 - rather than 706968 which is fine - however, 70696881 is incorrect and loses this mark.
To follow through check that all the working values at L follow from the candidate's final values from nodes A, H, M and S in whatever order the candidate has labelled these four nodes and that the final value and order of labelling follows through correctly. Repeat for Y (which will have working values from S and L).
a1B1: CAO for the route
a2B1ft: Follow through on their final value at Y - if answer is not 89 ft their final value at Y (condone lack of units)
b1B1: CAO for the route
b1M1: Their final value at $\mathrm{M}+40+21$ - accept a value of 102 (with no other working) for this mark.
b1A1: CAO (condone lack of units) - accept, as a minimum, 102 followed by 13 for both marks. If 13 with no working then award the previous M mark but withhold the final A mark

Question Number	Scheme						Marks
6. (a)	Bin 1: 24148 Bin 2: x 196 Bin 3: 2517 Bin 4: 9						M1 A1 A1 (3)
(b)	e.g. using middle right 24 14 8 x 24 \underline{x} 25 $\underline{19}$ 14 24 $\underline{25}$ \underline{x} $\underline{19}$ 14 $\underline{25}$ 24 \underline{x} $\underline{19}$ $\underline{17}$ $\underline{25}$ 24 \underline{x} $\underline{19}$ $\underline{17}$ $\underline{25}$ 24 \underline{x} $\underline{19}$ $\underline{17}$	25 8 8 14 14 14	6 6 17 8 9 $\underline{9}$	17 17 9 9 $\underline{8}$ 8		pivot 19 pivots $x \quad 6$ pivots 2517 pivots (24) 8 pivot 9 (sort complete)	M1 (quick sort) A1 $\left(1^{\text {st }}\right.$ pass/pivots for $2^{\text {nd }}$) A1ft (2 ${ }^{\text {nd }}$ and $3^{\text {rd }}$ passes correct) A1cso
(c)	(i) Bin 1:25 24 Bin 2: x 199 Bin 3: 171486	(ii)	$\operatorname{Bin} 1$ $\operatorname{Bin} 2$ Bin	25 $\times 1$ 17	9		M1 A1 A1 A1 (4)
(d)	$\begin{aligned} & x+19+9=50 \Rightarrow x=22 \\ & x+19+8=50 \Rightarrow x=23 \\ & \hline \end{aligned}$						$\begin{array}{ll} \hline \mathrm{B} 2,1,0 & \text { (2) } \\ \text { 13 marks } \end{array}$

Notes for Question 6

a1M1: First four items placed correctly and at least six values put in bins (so bin 1 correct and the x in bin 2). If a candidate gives x a value in the given interval then allow this for the M mark in (a) only. a1A1: First seven items placed correctly (so bins 1 and 2 correct and 25 in bin 3)
a2A1: cso - all correct
b1M1: Quick sort, pivot, p, chosen (must be choosing middle left or right - choosing first/last item as pivot is M0) and first pass gives >p, p, <p. So after the first pass the list should read (values greater than the pivot), pivot, (values less than the pivot). If only choosing one pivot per iteration M1 only b1A1: First pass correct, next two pivots chosen correctly for second pass. If a candidate gives x a value in the given interval then allow this for the M mark and first A mark only in (b).
b2A1ft: Second and third passes correct (follow through from their first pass and choice of pivots) - need not be choosing pivot(s) for the fourth pass for this mark.
b3A1: CSO (correct solution only- all previous marks in this part must have been awarded) including choice of pivots for the fifth pass and 'sort complete' - this could be shown either by a 'stop' statement or final list being re-written or using each item as a pivot.
c1M1: Must be using 'sorted' list in decreasing order. First four items placed correctly and at least six values put in bins (so bin 1 correct and the x and 19 in bin 2). If a candidate has given x a value in (c) then M0.
c1A1: First six values correct (bin 1 corerct, the x and 19 in bin 2, the 17 and 14 in bin 3)
c2A1: One allocation correct
c3A1: Both allocations correct - both allocations must be clear.
d1B1: A correct value of x stated (working not necessary) - dependent on one correct allocation in (c).
d2B1: Both values correctly calculated (with relevant working) - dependent on both allocations correct seen
in (c). If more than two values for \boldsymbol{x} stated (e.g. all possible integer values) then no marks in (d).
SC for (c): if 'sorted' list has one error from (b) (e.g. a missing number, an extra number or one number incorrectly placed) then M1A1 can be awarded in (c) (for four items (M1) and six items (A1) correctly placed - see above). However no marks in (d). If there is more than one error then M0.

Part (b) Using middle left as pivot

24	14	8	x	$\underline{19}$	25	6	17	9	pivot 19		
24	\underline{x}	25	$\underline{19}$	14	8	$\underline{6}$	17	9	pivots $x \quad 6$	M1 A1	
24	25	\underline{x}	$\underline{19}$	14	$\boxed{8}$	17	9	$\underline{6}$	pivots 248	8	
25	$\underline{24}$	\underline{x}	$\underline{19}$	$\underline{14}$	17	$\underline{8}$	9	$\underline{6}$	pivots $(25) 14(9)$	A1	
25	$\underline{\underline{24}}$	\underline{x}	$\underline{19}$	17	$\underline{14}$	$\underline{9}$	$\underline{8}$	$\underline{6}$	sort complete	A1cso	

Misreads

- If they have used the correct numbers at any point in part (a) and then use incorrect numbers in part (b) (say 71 instead of 17) from the beginning of the sort or misread their own numbers during part (b) then count it as an error in part (b) (so they will lose at least the final A mark but should be able to gain at least the M mark and ft A mark) - then mark part (c) according to the SC above.

Sorting list into ascending order in (b)

- If the candidate sorts the list into ascending order and reverse the list in part (b) then they can score full marks in (b).
- If the list is not reversed in part (b) then mark as a misread (so remove the last two A marks if earned in (b)). If the list is reversed at the start of (c) but not in (b) then still treat this as a misread. If the list is still in ascending order in part (c) award no marks for first fit increasing. If the candidate says that the list needs reversing in part (b) but doesn’t actually show the reversed list in (b) then remove the final A mark in (b).

Ascending (middle left)

| 24 | 14 | 8 | x | $\underline{19}$ | 25 | 6 | 17 | 9 | M1 | 24 | 14 | 8 | x | $\underline{19}$ | 25 | 6 | 17 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| 14 | 8 | $\underline{6}$ | 17 | 9 | $\underline{19}$ | 24 | \underline{x} | 25 | A1 | 14 | 8 | $\boxed{6}$ | 17 | 9 | $\underline{19}$ | 24 | \underline{x} | 25 |
| $\underline{6}$ | 14 | 8 | 17 | 9 | $\underline{19}$ | \underline{x} | $\underline{24}$ | 25 | | $\underline{6}$ | 14 | 8 | $\underline{17}$ | 9 | $\underline{19}$ | \underline{x} | 24 | 25 |
| $\underline{6}$ | $\underline{8}$ | 14 | $\underline{17}$ | 9 | $\underline{19}$ | \underline{x} | $\underline{24}$ | 25 | A1 | $\underline{6}$ | 14 | 8 | 9 | $\underline{17}$ | $\underline{19}$ | \underline{x} | 24 | $\underline{25}$ |
| $\underline{6}$ | $\underline{8}$ | $\underline{14}$ | 9 | $\underline{17}$ | $\underline{19}$ | \underline{x} | $\underline{24}$ | 25 | | $\underline{6}$ | $\underline{8}$ | 14 | $\underline{9}$ | $\underline{17}$ | $\underline{19}$ | \underline{x} | 24 | $\underline{25}$ |
| $\underline{6}$ | $\underline{8}$ | 9 | $\underline{14}$ | $\underline{17}$ | $\underline{19}$ | \underline{x} | $\underline{24}$ | 25 | A1cso | $\underline{6}$ | $\underline{8}$ | $\underline{9}$ | 14 | $\underline{17}$ | $\underline{19}$ | \underline{x} | 24 | $\underline{25}$ |

Question Number	Scheme	Marks	
7. (a)	The total float $F(i, j)$ of activity (i, j) is defined to be $F(i, j)=l_{j}-e_{i}-$ duration (i, j), where e_{i} is the earliest time for event i and l_{j} is the latest time for event j (see note below)	B2,1,0	(2)
(b)		M1 A1 A1	(3)
(c)	Critical activities: A C J M	B1	(1)
(d)	G can be delayed by $21-11-3=7$ (days)	M1 A1	(2)
(e)	$\frac{69}{30}=2.3$ so lower bound is 3 workers	M1 A1	(2)
(f) e.g.	$\begin{array}{llllllllllllllllll} 00 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 & 32 & 34 \\ \hline \end{array}$ \mathbf{B} \mathbf{E} \mathbf{G} \mathbf{H} \mathbf{K} \mathbf{D} \mathbf{F} \mathbf{I} \mathbf{L}	M1 A1 A1 A1 14 marks	(4)

Notes for Question 7

a1B1: For the first mark: the idea that total float is 'how long an activity can be delayed for'. Give bod. a2B1: For both marks: A clear correct statement e.g. the total amount of time that an activity may be delayed from its early start without delaying the project finish time. The candidate must clearly demonstrate a knowledge that total float = latest finish - earliest start - duration of activity. Ignore comments that infer that total refers to the sum of the floats for all activities in an activity network. Note that B1B0 should be awarded for an answer that has the pertinent idea of 'float' (see a1B1 above) and B1B1 for a clear correct statement (see a2B1 above) - B0B1 cannot be awarded in this part.
b1M1: All top boxes and all bottom boxes completed. Values generally increasing from left to right (for top boxes) and values generally decreasing from right to left (for bottom boxes). Condone missing 0 or 30 for M only (for bottom boxes). Condone one rogue value in top boxes and one rouge value in bottom boxes (if values do not increase from left to right (or decrease right to left) then if one value is ignored and then the values do increase from left to right (or decrease right to left) then this is considered to be one rogue value). b1A1: CAO for top boxes. b2A1: CAO for bottom boxes.
c1B1: CAO
d1M1: Correct calculation for their activity G seen - all three numbers correct (ft). Final value must be nonnegative.
d1A1: CAO (no follow through on this A mark). Answer of 7 with no working scores no marks in this part.
e1M1: Attempt to find lower bound [59 - 79 / their finish time]
e1A1: CAO - correct calculation seen then 3. [As 30/13 also gives 3, an answer of 3 with no working scores M0A0.]
f1M1: Not a cascade chart. 4 'workers' used at most and at least 8 activities placed.
f1A1: The critical (A, C, J, M) activities and B and D correct A-4, C - 7, J-10, M-9, B-5, D-9. B must be completed by its late finish time (11) and D must start after A and finishing before its late finish time (15).

Now check the last 7 activities - the last two marks are for E, F, G, H, I, K and L only
First check that there are only three workers and that all 13 activities are present (just once).
Then check precedences (see table below) - each row of the table could give rise to 1 error only in precedences

Finally check the length of each activity and the time interval in which the activity must take place (interval is inclusive).

Activity	Duration	Time interval	IPA
E	6	$4-17$	A
F	2	$13-17$	D
G	3	$11-21$	B, C
H	3	$13-21$	D
I	4	$15-21$	E, F
K	5	$14-30$	G
L	2	$14-30$	G

f2A1: 3 workers. All 13 activities present (just once). Condone one error either precedence, time interval or activity length, on activities E, F, G, H, I, K and L only.
f3A1: 3 workers. All 13 activities present (just once). No errors on activities E, F, G, H, I, K and L.

Notes for Question 8

a1B1: Any two correct inequalities (condone strict inequalities).
a2B1: CAO (equalities cannot be strict for this mark).
As there are a number of different methods that the candidates can adopt - consider the candidate's full response and mark each attempt according to the notes below - award the candidate the marks for their best response/attempt. However, do not mix the approaches together e.g. if they find the exact coordinates of all four vertices and then state that the maximum gradient of \mathbf{P} is $\mathbf{- 2}$ then this would score the first two marks only (method 1).

Method 1 (point testing)

b1B1: The coordinates of B, C and D stated exactly.
b2B1: The coordinates of A stated exactly.
b3B1: The objective function calculated in terms of k at either A or B or C or D.
b1M1: Either (their objective function at A) < (their objective function at B) or (their objective function at C) $<$ (their objective function at D) (condone equals sign or any inequality).
b1A1: Either $k>\frac{1}{4}$ or $k<\frac{1}{2}$ or $k \geq \frac{1}{4}$ or $k \leq \frac{1}{2}$.
b2A1: CAO $\frac{1}{4}<k<\frac{1}{2}$ or $\frac{1}{4} \leq k \leq \frac{1}{2}$ (or as separate inequalities)

Method 2 (objective line method I)

Comparing the gradient of the objective function to the gradient of the two lines with negative gradient.
b1B1: The minimum gradient (of P) stated as $-4-$ must see explicit mention of minimum.
b2B1: The maximum gradient (of P) stated as -2 - must see explicit mention of maximum.
b3B1: Gradient of objective function stated as $-\frac{1}{k}$.
b1M1: Comparing gradient of objective function to either -2 or -4 .
Final two marks as in method 1.

Method 3 (objective line method II)
b1B1: Minimum P parallel to $4 x+y=\cdots$ (limiting case) - must see explicit mention of minimum.
b2B1: Maximum P parallel to $2 x+y=\cdots$ (limiting case) - must see explicit mention of maximum.
b3B1: Re-arranging equations (either seen or implied) to give $x+\frac{y}{4}=\cdots, x+\frac{y}{2}=\cdots$
b1M1: Compare coefficients of y in the objective function \& lines.
Final two marks as in method 1.
SC: If no working seen (max 3/6 marks)
$k ■ \frac{1}{2}$ or $k ■ \frac{1}{4}$ (where \llbracket is any inequality or equals) award first B mark.
$k>\frac{1}{4}$ or $k<\frac{1}{2}$ or $k \geq \frac{1}{4}$ or $k \leq \frac{1}{2}$ award the first two B marks.
$\frac{1}{4}<k<\frac{1}{2}$ or $\frac{1}{4} \leq k \leq \frac{1}{2}$ award the first three B marks.

PMT

edexcel

Mark Scheme (Results)

January 2015

Pearson Edexcel International A Level in Decision Mathematics 1 (WDM01/01)

Edexcel and BTEC Qualifications

Abstract

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015
Publications Code IA040490
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL I AL MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	AC, AB, BH; AF AG; DG, DE or BE	Marks
1. (a)		

Question Number	Scheme	Marks
2. (a)	e.g. B can only do task 2 and F can only do task 6 therefore E will have no allocation as E can only do tasks 2 and 6 e.g. D has to do task 4 as task 4 can only be done by D therefore task 5 has to be done by A as task 5 can only be done by A and D which leaves task 3 with no worker as only A can do task 3	B1 (1)
(b)	$\begin{aligned} & \mathrm{C}-1=\mathrm{A}-3 \\ & \mathrm{C}-1=\mathrm{A}-5=\mathrm{D}-4 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { B1 } \\ \text { B1 } & \text { (2) } \\ \hline \end{array}$
(c)	$\begin{aligned} & A=3, B=2, C=1, D=5, E=6(F \text { unmatched }) \\ & A=5, B=2, C=1, D=4, E=6 \text { (F unmatched) } \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { B1 } \\ \text { B1 } & \text { (2) } \\ \hline \end{array}$
(d)	Alternating path $F-6=E-2=B-5=D-4$ or $F-6=E-2=B-5=A-3$ Change status $F=6-E=2-B=5-D=4$ or $F=6-E=2-B=5-A=3$ Complete matching $A=3, B=5, C=1, D=4, E=2, F=6$	M1 A1 A1 (3) 8 marks
Notes for Question 2		
a1B1: CAO - must be a completely correct statement. b1B1: CAO ($\mathrm{C}-1=\mathrm{A}-3$). b2B1: CAO ($\mathrm{C}-1=\mathrm{A}-5=\mathrm{D}-4$). c1B1: $\mathrm{CAO}(\mathrm{A}=3, \mathrm{~B}=2, \mathrm{C}=1, \mathrm{D}=5, \mathrm{E}=6)$. c2B1: $\mathrm{CAO}(\mathrm{A}=5, \mathrm{~B}=2, \mathrm{C}=1, \mathrm{D}=4, \mathrm{E}=6)$. d1M1: An alternating path from F to either 3 or 4 (or vice-versa). d1A1: CAO - a correct path including change status either stated (only accept 'change (of) status' or 'c.s.') or shown. Chosen path clear. d2A1: CAO must follow from the correct stated path. Accept on a clear diagram (with six arcs only).		

Question Number	Scheme	Marks
3. (a)	 Bin 1: 1.1 $\mathbf{0 . 7}$ $\mathbf{0 . 9}$ 0.2 Bin 2: $\mathbf{1 . 9}$ 0.4 0.5 Bin 3: 2.1 Bin 4: 2.3 Bin 5: 1.7	M1 A1 A1 (3)
$\begin{array}{r} \text { (b) (i) } \\ \text { (ii) } \end{array}$	1.1 1.9 0.9 2.1 0.7 2.3 0.4 0.5 1.7 Comparisons: 9 Swaps: 7 	$\begin{array}{\|l\|} \hline \text { M1 A1 } \\ \text { B1 B1 } \\ \hline \end{array}$
(c)	e.g. using middle right	M1 A1 A1ft A1 (4)
(d)	Bin 1: 2.3 0.7 Bin 2: 2.1 $\underline{0.9}$ Bin 3: $\mathbf{1 . 9}$ $\mathbf{1 . 1}$ Bin 4: $\mathbf{1 . 7}$ 0.5 0.4	M1 A1 A1 (3) 14 marks
Notes for Question 3		
a1M1: First four numbers placed correctly and at least six numbers put in bins. Condone cumulative totals here only. a1A1: First seven numbers placed correctly. a2A1: CSO - all correct. bi1M1: Bubble sort, end number in place correctly. SC for M1 only: $\begin{array}{lllllllllllll}0.7 & 1.1 & 0.9 & 1.9 & 0.2 & 2.1 & 0.4 & 0.5 & 1.7 & 2.3 & \text { (ascending from left-hand end). }\end{array}$ $\begin{array}{lllllllllll}0.2 & 1.1 & 0.7 & 1.9 & 0.9 & 2.1 & 0.4 & 2.3 & 0.5 & 1.7 & \text { (ascending from right-hand end). }\end{array}$ $\begin{array}{lllllllllll}2.3 & 1.1 & 0.7 & 1.9 & 0.9 & 2.1 & 0.2 & 1.7 & 0.4 & 0.5 & \text { (descending from right-hand end). }\end{array}$ bi1A1: CAO - isw after one complete pass. bii1B1: Comparisons correct (9). bii2B1: Swaps correct (7). c1M1: Quick sort - pivots, p, selected and first pass gives >p, p, <p. If only choosing 1 pivot per iteration M1 only. Using bubble sort in this part is M0. c1A1: First pass correct and next pivots chosen correctly/consistently for second pass. c2A1ft: Second and third passes correct (follow through from their first pass and choice of pivots) - next pivot(s) chosen correctly/consistently for fourth pass. c3A1: CSO - including choice of pivot for the fifth pass and then either a 'stop' statement or final re-listing or using each item as a pivot. d1M1: Must be using 'sorted' list in decreasing order (independent of (c)). First five numbers placed correctly and at least six numbers put in bins. First-fit increasing is M0. d1A1: First seven numbers placed correctly. d2A1: CSO - all correct.		

Question	Scheme	Marks
Number		

SC for (d): If the 'sorted' list used in (d) has one 'error' from (c) (e.g. a missing number, an extra number or one number incorrectly placed) then M1 only can be awarded in (d) (for the first five numbers placed correctly). If there is more than one 'error' then M0. Allow full marks in (d) if a correct list is used in (d) even if the list is incorrect at the end of (c).

Sorting list into ascending order in (c)

- If the candidate sorts the list into ascending order and reverses the list in (c) then they can score full marks in (c).
- If the list is not reversed in (c) then mark as a misread (so remove the last two A marks earned in (c)). If the list is reversed at the start of (d) but not in (c) then still treat this as a misread. If the candidate says that the list needs reversing in (c) but doesn't actually show the reversed list in (c) then remove the final A mark earned in (c).

Middle left

1.9	1.1	2.1	0.9	$\underline{2.3}$	0.7	0.5	1.7	0.4	0.2	Pivot 2.3		M1 A1
$\underline{2.3}$	1.9	1.1	2.1	0.9	0.7	0.5	1.7	0.4	0.2	Pivot 0.7		
$\underline{2.3}$	1.9	1.1	$\underline{2.1}$	0.9	1.7	$\underline{0.7}$	0.5	$\underline{0.4}$	0.2	Pivot 2.1	0.4	
$\underline{2.3}$	$\underline{2.1}$	1.9	$\underline{1.1}$	0.9	1.7	$\underline{0.7}$	0.5	$\underline{0.4}$	0.2	Pivot $1.1(0.5)$	(0.2)	A1ft
$\underline{\underline{2.3}}$	$\underline{\underline{2.1}}$	$\underline{1.9}$	1.7	$\underline{1.1}$	0.9	$\underline{0.7}$	0.5	$\underline{0.4}$	0.2	Pivot $1.9(0.9)$		
2.3	$\underline{2.1}$	$\underline{1.9}$	1.7	$\underline{1.1}$	0.9	$\underline{0.7}$	0.5	$\underline{0.4}$	0.2	(sort complete)	A1	

Ascending order (middle right)

1.9	1.1	2.1	0.9	2.3	0.7	0.5	1.7	0.4	0.2	Pivot 0.7	
0.5	0.4	0.2	0.7	1.9	1.1	2.1	0.9	2.3	1.7	Pivot 0.40 .9	M1 A1
0.2	$\underline{0.4}$	0.5	0.7	0.9	1.9	1.1	2.1	2.3	1.7	Pivot (0.2) (0.5) 2.1	
0.2	0.4	0.5	0.7	0.9	1.9	1.1	1.7	2.1	2.3	Pivot 1.1 (2.3)	A1ft
0.2	$\underline{0.4}$	0.5	0.7	0.9	1.1	1.9	1.7	$\underline{2.1}$	2.3	Pivot 1.7	
0.2	$\underline{0.4}$	0.5	0.7	$\underline{0.9}$	1.1	1.7	1.9	$\underline{2.1}$	2.3	sort complete	A1
Ascending order (middle left)											
1.9	1.1	2.1	0.9	2.3	0.7	0.5	1.7	0.4	0.2	Pivot 2.3	
1.9	1.1	2.1	0.9	0.7	0.5	1.7	0.4	0.2	2.3	Pivot 0.7	M1 A1
0.5	0.4	0.2	0.7	1.9	1.1	2.1	0.9	1.7	$\underline{2.3}$	Pivot 0.42 .1	
0.2	$\underline{0.4}$	0.5	0.7	1.9	1.1	0.9	1.7	$\underline{2.1}$	$\underline{2.3}$	Pivot (0.2) (0.5) 1.1	A1ft
0.2	$\underline{0.4}$	0.5	0.7	0.9	1.1	1.9	1.7	2.1	$\underline{2.3}$	Pivot (0.9) 1.9	
0.2	$\underline{0.4}$	0.5	0.7	0.9	1.1	1.7	1.9	2.1	$\underline{2.3}$	sort complete	A1

Question Number	Scheme	Marks
4. (a)	Shortest route: ABCFEJ Length: 22 (metres)	M1 A1 (ABDC) A1(GFH) A1ft (EJ) A1 A1ft
(b)	$\begin{aligned} & \mathrm{AE}+\mathrm{FJ}=15+11=26 \\ & \mathrm{AF}+\mathrm{EJ}=11+7=18^{*} \\ & \mathrm{AJ}+\mathrm{EF}=22+4=26 \end{aligned}$ Arcs AB, BC, CF, EJ will be traversed twice	M1 A1ft A1ft A1ft A1
(c)	Route: e.g. ABADGHDFHJEJFECFCBCA Length: $100+18=118$	$\begin{aligned} & \text { B1 } \\ & \text { B1ft } \\ & \hline \end{aligned}$
(d)	Start at E, finish at J (or vice versa) or start at C, finish at J (or vice-versa) Length: $100-3-4+4=97$ (metres)	M1 A1 B1 (3) 16 marks
	Notes for Question 4	
a1M1: A larger value replaced by a smaller value at least once in the working values at either C or E or F or H or J. a1A1: All values in A, B, C and D correct and the working values in the correct order, including order of labelling. Condone lack of 0 in A's working value. a2A1: All values in F, G and H correct and the working values in the correct order. Penalise order of labelling only once per question. Condone an additional working value at H of 19 after the 13. a3A1ft: All values in E and J correct on the follow through and the working values in the correct order. Penalise order of labelling only once per question. a4A1: CAO (ABCFEJ) for the route. a5A1ft: Follow through on their final value at J - if their answer is not 22 follow through their final value at J (condone lack of units). b1M1: Three pairings of the correct four odd nodes. b1A1ft: One row correct including pairing and total (the ft on the first three A marks in (b) is for using their final values at E, F and J from (a) for the lengths of AE, AF and AJ only). b2A1ft: Two rows correct including pairings and totals. b3A1ft: All three rows correct including pairings and totals. b4A1: The smallest repeat arcs AB, BC, CF and EJ clearly stated. Accept ABCF, EJ but not AF.		

Question Number	Scheme	Marks
c1B1: Any		

c1B1: Any correct route (checks: 20 nodes, starting and finishing at A, pairings AB, BC, CF, EJ appear twice in the route and that A, C and F appear three times, B, D, E, H and J appear twice and G appears once).
c2B1ft: Correct answer of 118 or 100 + their least out of a choice of at least two totals given in (b). d1M1: Any consideration/mention of all the odd nodes (C, E, F and J) or consideration/mention of all the odd pairings (CE, CF, CJ, EF, EJ, FJ) or consideration/mention of arcs EF and CF (and no others) having least weight or EF and CF (and no others) having a weight of 4 or listing one correct starting and finishing point (must be clear).
d1A1: Both combinations of starting and finishing points correct (E and J + C and J) and no others. d1B1: CAO (97)

Question Number	Scheme	Marks
5. (a)		M1 A1 A1 A1 A1
(b)	Dummies are needed to show either - dependency where subsequent activities do not all depend on the same preceding activities - that an activity can be uniquely represented in terms of its end events	B1 B1 (2) 7 marks

Notes for Question 5

In (a) condone lack of, or incorrect, numbered events throughout - also 'dealt with correctly' means that the activity starts from the correct event but may not finish at the correct event. Activity on node is M0.

Do not penalise the same error twice with the first three A marks, for example, if activity C is not labelled (but the arc is present) then this will lose the first A mark and the final (CSO) A mark - they can still earn the second A mark on the bod.
a1M1: Eight activities (labelled on arc), one start and at least one dummy placed.
a1A1: Activities A, B, $1^{\text {st }}$ dummy (+ arrow) and C, D and E dealt with correctly.
a2A1: $2^{\text {nd }}$ dummy (+ arrow) and F, G and K dealt with correctly.
a3A1: Activities H, I, ${ }^{\text {rd }}$ dummy (+ arrow) and J dealt with correctly.
a4A1: CSO - all arrows present and correctly placed with one finish.
Penalise lack of, or incorrect, arrows on the dummies only once with the first three A marks (on the first occurrence).
b1B1: Dependency + some explanation of what this means, bod - allow a correct example using any nodes/letters.
b2B1: Uniqueness - please note that, for example, 'so that activities can be defined uniquely' is not sufficient to earn this mark. There must be some mention of describing activities either in terms of the event at each end or in terms of an activities events. However, give bod on statements that imply that an activity begins and ends at the same event.

Question Number	Scheme	Marks
6. (a)	$x+y \geq 30$	B1 (1)
(b)	$x \geq 0, y \geq 0$	B1 (1)
(c)		B1 B1 B1 B1
(d)	Objective line drawn $(34,3)$ so 34 red hats and 3 green hats	$\begin{array}{\|ll\|} \hline \text { M1 A1 } \\ \text { A1 } \\ \hline \end{array}$
(e)	$\begin{aligned} & \begin{array}{l} 34 r+3 g=107.5 \\ g=3 r \end{array} \end{aligned}$ Leading to $r=2.50$ and $g=7.50$ So a red hat costs $£ 2.50$ and a green hat costs $£ 7.50$	B1ft B1 DB1 12 marks
Notes for Question 6		
a1B1: CAO $(x+y \geq 30)$. b1B1: CAO (accept $x, y \geq 0$ or x and y are non-negative) - do not accept strict inequalities. In (c) lines must pass through one small square of the points stated: $\begin{gathered} x+y=30 \text { passes through }(0,30),(15,15),(30,0) \\ 2 y+x=40 \text { passes through }(0,20),(20,10),(40,0) \\ 2 y-x=-30 \text { passes through }(30,0),(50,10),(60,15) \end{gathered}$ c1B1: $x+y=30$ drawn correctly. c2B1: $2 y+x=40$ drawn correctly. c3B1: $2 y-x=-30$ drawn correctly. c4B1: Region, R, correctly labelled - not just implied by shading - must have scored all three previous marks in this part. Condone lack of shading for $x \geq 0$.		

Question Number	Scheme	Marks
d1M1: Drawing the correct objective line or its reciprocal $\left(m=-3\right.$ or $\left.-\frac{1}{3}\right)$. Line must be correct to within		
one small square if extended from axis to axis.		

d1A1: Correct objective line $\left(m=-\frac{1}{3}\right)$ - condone lack of labelling of the objective line.
d2A1: Correct point identified - accept as a coordinate $(34,3)$.
e1B1ft: A 'correct' equation involving their optimal point from (d) (accept any values even if non-integer) and 107.50.
e2B1: CAO on the relationship between the costs of green hats and red hats ($g=3 r$) - this mark may be implied e.g. $34 r+3(3 r)=107.5$ would score the first two marks in this part.
e3DB1: CAO - this mark is dependent on having the correct optimal point $(34,3)$ in (d).

Question Number	Scheme	Marks
e1M1: A statement with the correct number of workers (5) and the correct activities (H, I, J, K and L) with		
some mention of time.		
e1A1: A completely correct statement with details of both time and activities. Candidates only need to give		
a time within the correct interval. Please note the strict inequalities for the time interval. Allow for example,		
'on day 28' as equivalent to $27<$ time <28.		

edexcel "

Mark Scheme (Results)

Summer 2015

Pearson Edexcel International A Level in Decision Mathematics 1 (WDM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code IA041219
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL I AL MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Notes for Question 1

a1M1: A larger value replaced by a smaller value at least once in the working values at either C or E or F or G or H
a1A1: All values in S, A, B, D and C correct. The working values at C must be in the correct order.
Condone lack of 0 in S's working value
a2A1: All values in F and E correct and the working values in the correct order. Penalise order of labelling only once per question (F and E must be labelled in that order and F must be labelled after S, A, B, D and C)
a3A1ft: All values in H and G correct on the follow through and the working values in the correct order. Penalise order of labelling only once per question (H and G must be labelled in that order and H labelled after all other nodes (excluding G))
a4A1ft: If their answer is not 23 follow through their final value at G (condone lack of units)
a5A1: CAO for the route ($\mathrm{S}-\mathrm{A}-\mathrm{C}-\mathrm{F}-\mathrm{G}$)
b1B1ft: If their answer is not 20 follow through their final value at H (condone lack of units)
b2B1: CAO for the route ($\mathrm{S}-\mathrm{A}-\mathrm{C}-\mathrm{F}-\mathrm{E}-\mathrm{H}$)

Question Number	Scheme	Marks

Sorting list into ascending order in (c)

- If the candidate sorts the list into ascending order and reverses the list then they can score full marks
- If the list is not reversed then mark as a misread. If the candidate says that the list needs reversing but doesn't actually show the reversed list then remove the final A mark earned
Misreads - if there is a 'misread' of a single number (this could take the form of an extra number, a number missing, or a number changed, for example, 31 rather than 13) before starting the sort in (c) then mark as a misread. If they 'misread' more than one number then M0. If they miscopy one of their own numbers during the sort then this is an accuracy error and loses the corresponding A mark(s)

Question Number	Scheme	Marks
3.(a)	e.g. P - Q - S - P	B1
(b)	As vertex Q appears more than once... \ldots P $-\mathrm{Q}-\mathrm{R}-\mathrm{T}-\mathrm{Q}-\mathrm{S}$ is not an example of a path on G	
(c)	PS, ST, SV; QS, QR; RU, TW	B1
(d)	ST SV PS QS (not QT) QR (not PQ) (not TV) RU TW	M1; A1; A1
(3)		

Question		
Number	Scheme	Marks

d1M1: Kruskal's - first four arcs (ST, SV, PS, QS, \ldots. or weights $9,11,13,14, \ldots$) chosen correctly in order and at least one rejection seen at some point
d1A1: All seven arcs (ST, SV, PS, QS, QR, RU, TW or weights $9,11,13,14,16,20,24$) chosen correctly in order and no additional arcs
d2A1: CSO - all selections and rejections correct (in correct order and at the correct time) - do not accept weights only for this mark

- Listing all the arcs in order and then listing those arcs in the tree in the correct order is fine for full marks (this implies that rejections are correct and at the correct time)
- Listing all the arcs in order and just drawing the MST is M0
e1B1: CAO (condone lack of/incorrect weights on arcs)
f1B1: $x<31$ or $x \leq 31$ or $x<30$ or $x \leq 30$
f2B1: Either $20<x<31$ or $21 \leq x \leq 30$

Question Number	Scheme							
4.(a)	A path from an unmatched vertex in one set to an unmatched vertex in the other set... ...which alternately uses arcs not in/in the matching						B1	(2)
(b)	Initial matching: $\mathrm{A}=3, \mathrm{~B}=2, \mathrm{D}=4$ (C and E unmatched) Improved matching: $A=4, B=3, D=1, E=2$ (C unmatched)						$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \\ \hline \end{array}$	(2)
(c)	e.g. (see below for alternatives) Alternating path: $\mathrm{C}-3=\mathrm{B}-2=\mathrm{E}-5$ Change status to give: $\mathrm{C}=3-\mathrm{B}=2-\mathrm{E}=5$ Complete matching: $\mathrm{A}=4, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=1, \mathrm{E}=5$						M1 A1 A1 (7	(3)
Notes for Question 4								
	Possible paths	A	B	C	D	E		
	C-3-B-2-E-5	4	2	3	1	5		
	$\mathrm{C}-4-\mathrm{A}-1-\mathrm{D}-5$	1	3	4	5	2		
	$\mathrm{C}-4-\mathrm{A}-3-\mathrm{B}-2-\mathrm{E}-5$	3	2	4	1	5		

a1B1: Unmatched to unmatched (vertex/node may be implied but do not accept arc) - technical language (if used) must be correct
a2B1: (Alternate) arcs not in/in (arc(s) (not vertices/nodes) must be explicitly mentioned)
In (b) ignore the candidates labelling in this part - for example, give bod on candidates who call the initial matching the improved matching (and vice-versa) or those that state the initial matching under (ii). Condone lack of unmatched vertices stated. Both the initial and improved matching may be stated or drawn - do check carefully the top of the second page for these drawn there. Only accept a clear diagram with exactly three or four arcs
b1B1: CAO ($\mathrm{A}=3, \mathrm{~B}=2, \mathrm{D}=4$)
b2B1: $\mathrm{CAO}(\mathrm{A}=4, \mathrm{~B}=3, \mathrm{D}=1, \mathrm{E}=2)$
c1M1: An alternating path from C to 5 (or vice - versa)
c1A1: CAO - a correct path including change status either stated or shown. Chosen path clear
c2A1: CAO - must follow from correct stated path. Accept on a clear diagram (with five arcs only).

Question Number	Scheme	Marks
5.(a)	$\mathrm{A}(\mathrm{BC}) \mathrm{E}+\mathrm{H}(\mathrm{F}) \mathrm{G}=15+13=28^{*}$ $\mathrm{A}(\mathrm{BDF}) \mathrm{H}+\mathrm{E}(\mathrm{F}) \mathrm{G}=30+7=37$ $\mathrm{A}(\mathrm{BDF}) \mathrm{G}+\mathrm{E}(\mathrm{F}) \mathrm{H}=21+16=37$ Repeat arcs: AB, BC, CE, HF, FG Length: $214+28=242(\mathrm{~km})$	M1 A1 A1 A1 A1 A1ft
(b)	4	B1 (1)
(c)	EG (7) is the shortest link between two odd nodes excluding H Repeat EG (7) since this is the shortest path excluding H We finish at A Length of route $=214+7=221(\mathrm{~km})$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 (3) } \\ & \text { (10 marks) } \end{aligned}$
Notes for Question 5		
a1M1: Three distinct pairings of the correct four odd nodes a1A1: One row correct including pairings and totals a2A1: Two rows correct including pairings and totals a3A1: All three rows correct including pairings and totals a4A1: The smallest repeat arcs (accept ABCE, HFG but not AE, HG) a5A1ft: Correct answer of 242 or $214+$ their least		

b1B1: CAO (4)
c1M1: Identifies the need to repeat one path of the three (AE, EG, AG) which does not include H (maybe implicit) or listing of only these possible repeats - this mark is dependent on either scoring the M mark in (a) or stating all three posssible paths c1A1: Identifies EG as the least and A as the finishing point. They have to explicitly state the EG is the least path (but they do not need to include that it is the least of those that do not include H as this is the least of all six possible paths)
c2A1: CAO (221)

Question Number	Scheme	Marks

Notes for Question 6

a1B1: Any four rows correct
a2B1: All eight rows correct
b1M1: All top boxes complete, values generally increasing in the direction of the arrows ('left to right'), condone one rogue
b1A1: CAO
b2M1: All bottom boxes complete, values generally decreasing in the opposite direction of the arrows ('right to left'), condone one rogue.
b2A1: CAO
c1B1: CAO - correct calculation seen
d1B1: CAO - either a correct calculation seen or awrt 3.4 then 4 . An answer of 4 with no working scores B0
e1M1: Not a cascade chart. 5 workers used at most, at least 8 new (14 in total) activities placed e1A1: 4 workers. All 11 new (17 in total) activities present (just once). Condone two errors either precedence or time interval or activity length
e2A1: 4 workers. All 11 new (17 in total) activities present (just once). Condone one error either precedence or time interval or activity length
e3A1: CAO

Activity	Duration	Time interval	IPA
D	8	$5-21$	A
E	4	$10-21$	B, C
F	3	$10-23$	B, C
H	14	$10-32$	C
I	11	$14-32$	D, E
K	5	$15-35$	G
L	10	$24-42$	G, H
M	10	$25-42$	I
P	11	$23-35$	D, E, F, J
Q	7	$34-42$	K, P
R	5	$34-42$	K, P

Question Number	Scheme	Marks
7.(a)	$\begin{aligned} & 60 x+35 y \geq 840 \text { or } x+\frac{7}{12} y \geq 14 \Rightarrow 12 x+7 y \geq 168 \\ & 15 x+24 y \leq 480 \text { or } \frac{1}{4} x+\frac{2}{5} y \leq 8 \Rightarrow 5 x+8 y \leq 160 \end{aligned}$	M1 A1 M1 A1 (4)
(b)	$2 y \geq x$	M1 A1 (2)
(c)		$\begin{array}{\|l} \text { B1 } \\ 12 x+7 y=168 \\ \\ \text { B1 } \\ 5 x+8 y=160 \\ \\ \text { B1 } \\ 2 y=x \\ \\ \text { B1 } \\ \text { R correct (4) } \end{array}$
$\begin{aligned} & \text { (d)(i) } \\ & \text { (d)(ii) } \end{aligned}$	Objective line correctly drawn (and labelled) Optimal vertex labelled $V\left(\frac{160}{9}, \frac{80}{9}\right)$	B1 DB1 M1 A1 (4)
(e)	Make 17 hardbacks and 9 paperbacks, expected profit (£)1344	$\begin{aligned} & \text { B1 B1 (2) } \\ & \text { (16 marks) } \end{aligned}$

Question Number	Scheme
Notes for Question 7	
a1M1: Two of three coefficients correct with correct inequality sign in unsimplfied form or all three coefficients correct with any sign $(=,<,>, \leq, \geq)$ a1A1: CAO (the correct answer with no working can imply M1 only) a2M1: Two of the three coefficients correct with correct inequality sign in either unsimplified or simplified form or all three coefficients correct with any sign $(=,<,>, \leq, \geq)$ a2A1: CAO (the correct answer with no working can imply M1A1) b1M1: Either both coefficients correct (accept $=,<,>, \leq, \geq$ here) or $y \geq 2 x$ b1A1: CAO	

c1B1: $12 x+7 y=168$ drawn correctly, does not pass outside of a small square of $(0,24)$ and $(14,0)$. Ignore shading
c2B1: $5 x+8 y=160$ drawn correctly, does not pass outside of a small square of $(0,20)$ and $(32,0)$. Ignore shading
c3B1: $2 y=x$ drawn correctly, does not pass outside of a small square of $(0,0),(16,8)$ and sufficiently long enough to define the feasible region. Ignore shading
c4B1: R labelled correct (not just implied by shading) - must have earned all previous marks in this part
di1B1: Drawing the correct objective line on the graph, use line drawing tool to check if necessary. Line must not pass outside of a small square if extended from axis to axis
di2DB1: V labelled clearly on their graph. This mark is dependent on both the correct three line segments that define the boundary of the feasible region and the correct objective line
dii1M1: The simultaneous equations $5 x+8 y=160$ and $x=2 y$ being used in an attempt to find V - must get to $\mathrm{x}=\cdots$ or $\mathrm{y}=\cdots$ (condone one error in the solving of the simultaneous equations)
dii1A1: CAO $\left(\frac{160}{9}, \frac{80}{9}\right)$ or $\left(17 \frac{7}{9}, 8 \frac{8}{9}\right)$ (coordinates must be exact) - the correct answer with no working can imply M1A1
e1B1: CAO $(17,9)-$ accept $x=17, y=9$
e2B1: CAO ((£)1344)

edexcel "

Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE in
Decision Mathematics 1 (6689/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UA041213
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks
affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
$\mathbf{1 . ~ (a) ~}$	There are two unmatched vertices in each set (the algorithm matches only one vertex from one set to one vertex in the other set once per iteration)	B1
(b)	$\mathrm{B}-4=\mathrm{C}-5$ $\mathrm{D}-2=\mathrm{A}-3=\mathrm{F}-6=\mathrm{E}-1$	M 1 A1
(c)	$\mathrm{A}=3,(\mathrm{~B}$ unmatched), $\mathrm{C}=4, \mathrm{D}=2, \mathrm{E}=5, \mathrm{~F}=6$	B 1
(d)	Alternating path: $\mathrm{B}-4=\mathrm{C}-5=\mathrm{E}-1$ Change status: $\mathrm{B}=4-\mathrm{C}=5-\mathrm{E}=1$ Complete matching: $\mathrm{A}=3, \mathrm{~B}=4, \mathrm{C}=5, \mathrm{D}=2, \mathrm{E}=1, \mathrm{~F}=6$	M1 A1 $\mathbf{6}$ marks
	(2)	

a1B1: CAO - an understanding that there are two unmatched vertices in each set. However, be generous, and see below examples that we would accept for B1

- Both B and D (or 1 and 5) are unmatched
- Two vertices in set X (or two in set Y) are unmatched
- There are four unmatched nodes (or there are more than two unmatched nodes)
- There are two pairs of nodes that are not matched (on one side of the graph)
- There are two vans (or deliveries) that are not matched to deliveries (or vans)
- There are two vertices on the left (or two on the right) that have not been matched
- Two vertices in set X and Y are unmatched (bod)

Examples for B0:

- There are two unmatched nodes
- There are two sets of unmatched nodes
- Ther are two unmatched arcs in each set

So accept poor terminology (for example, point for vertex, side for set, etc.) but not incorrect terminology (arc for vertex, etc.) and accept contextualised answers ('vans' rather than 'vertices')
b1M1: One correct alternating path (accept any symbol connecting the vertices, for example, $\mathrm{B}-4-\mathrm{C}-5$, or B4C5). Note that $5-\mathrm{C}=4-\mathrm{B}$ and $1-\mathrm{E}=6-\mathrm{F}=3-\mathrm{A}=2-\mathrm{D}$ (so paths from 5 to B and 1 to D) are fine
b1A1: Both paths correct (isw if more than two paths are stated)
c1B1: CAO - condone lack of B or 1 being stated as unmatched. The improved matching may be stated or drawn - do check carefully the top of the second page for the improved matching drawn there. Only accept a clear diagram with exactly five arcs
d1M1: The correct alternating path from B to 1 (or vice-versa) and then either (i) or (ii)
(i) the 'change status' either stated in words (but only accept 'change (of) status' or 'c.s.' not 'change state’ etc.) OR shown (all symbols e.g. (...-...=...-...) interchanged (...=...-...=...).
(ii) the correct complete matching either stated or drawn - only accept a clear diagram with exactly six arcs - do check carefully the top of the second page for the complete matching drawn there.
d1A1: CAO - all three parts - the correct alternating path and the change status either stated or shown and the complete matching either stated or drawn

Question Number	Scheme	Marks
2.(a)		M1 (quick) A1 (1 $1^{\text {st }}$ pass/pivots for $2^{\text {nd }}$ pass) A1ft ($2^{\text {nd }} / 3^{\text {rd }}$ passes and pivot(s) for $4^{\text {th }}$ pass) A1 (cso + sort complete) (4)
(b)	e.g. left to right 7253 8^{59}	M1 (bubble) A1 (1 $1^{\text {st }}$ and $2^{\text {nd }}$ passes) A1ft (3 ${ }^{\text {rd }}$ and $4^{\text {th }}$ passes) A1 (cso + sort complete) (4)
(c)	Pivot $1=\left[\frac{1+20}{2}\right]=11$ number 5368 is after 53 so reject 1-11 Pivot $2=\left[\frac{12+20}{2}\right]=16$ number 7768 is before 77 so reject $16-20$ Pivot $3=\left[\frac{12+15}{2}\right]=14$ number 7268 is before 72 so reject $14-15$ Pivot $4=\left[\frac{12+13}{2}\right]=13$ number $68-$ number found	M1 A1 A1(cso) (3) 11 marks
	Notes for Question 2	
a1M1: Quick sort, pivot, p, chosen (must be choosing middle left or right - choosing first/last item as pivot is M0) and first pass gives <p, p, >p. So after the first pass the list should read (values less than the pivot), pivot, (values greater than the pivot). If only choosing one pivot per iteration M1 only a1A1: First pass correct and next pivot(s) chosen correctly for second pass (but second pass does not need to be correct) a2A1ft: Second and third passes correct (follow through from their first pass and choice of pivots) - and next pivot(s) chosen correctly for the fourth pass a3A1: CSO (correct solution only - all previous marks in this part must have been awarded) including 'sort complete' - this could be shown by the final list being re-written or 'sorted' statement or each item being used as a pivot b1M1: Bubble sort. Consistent direction, end number (greatest/least) in place. Do check these carefully as		

Question Number	Scheme	Marks
some candidates show the result of each comparison and swap in the first pass		
b1A1: First and second passes correct - so end two numbers in place		
b2A1ft: Third and fourth passes correct following through from the candidate's second pass		
b3A1: CSO (correct solution only) - including either a 'sort complete' statement or final list rewritten/sixth		
pass		
c1M1: Choosing middle right pivot (choosing middle left is M0) + discarding/retaining half the list. So 53		
(the 11 ${ }^{\text {th }}$ value) found as a pivot and either rejecting the first 11or 10 values or retaining the final 9 or 10		
values		
c1Al : First and second passes correct i.e. 53 found and either using 67 to 91 in 2nd pass or discarding 9 to		
53 (so therefore no 'sticky' pivots in the first two passes - sticky is when the pivot is retained in the next		
pass). Then 77 found and either using 67 to 75 in 3rd 3ass or discarding 77 to 91		
c2A1 : CSO - search complete + 'found' (accept 'found', 'located', 'stop', etc. but not just, for example, the		
number underlined; must be convinced that 68 has been located and is not a pivot or a number in a sublist		
with only one value)		
Sorting list into descending order in either (a) and/or (b)		

- If the candidate sorts the list into descending order and reverses the list then they can score full marks
- If the list is not reversed then mark as a misread (so remove the last two A marks earned). If the candidate says that the list needs reversing but doesn't actually show the reversed list then remove the final A mark earned
Misreads - if there is a 'misread' of a single number (this could take the form of an extra number, a number missing, or a number changed, for example, 13 rather than 31) before starting either sort or the binary search then mark as a misread. If they 'misread' more than one number then M0. If they miscopy one of their own numbers during the sort then this is an accuracy error and loses the corresponding A mark(s)

Using middle left quick sort in (a): (note: for full marks must identify 24 as a pivot but no sort complete statement required as pivoting on the 24 produces no further swaps)

18	29	48	9	$\boxed{42}$	31	37	24	27	41	pivot 42
18	29	9	31	37	24	27	41	$\underline{42}$	48	pivot(s) 31, (48)
18	29	$\underline{9}$	24	27	$\underline{31}$	$\underline{37}$	41	$\underline{42}$	48	pivots 9,37
$\underline{9}$	18	$\frac{29}{29}$	24	27	$\underline{31}$	$\underline{37}$	41	$\underline{42}$	48	pivot(s) 29, (41)
$\underline{9}$	18	$\underline{24}$	27	$\underline{29}$	$\underline{31}$	$\underline{37}$	41	$\underline{42}$	48	pivot 24
$\underline{9}$	18	$\underline{24}$	27	$\underline{29}$	$\underline{31}$	$\underline{37}$	41	$\underline{42}$	48	(sort complete)

Right to left bubble sort in (b):

Question Number	Scheme	Marks
3.(a)	Shortest route: A - B - F - D - G - H - J Length: 22 (km)	M1 A1 (ABFDC) A1 (GH) A1ft (EJ) A1 A1ft (6)
(b)	$\text { E.g. } 22-7=15 \mathrm{JH}, 15-1=14 \mathrm{HG}, 14-5=9 \mathrm{GD}, 9-2=7 \mathrm{DF}, 7-2=5 \mathrm{FB},$ 5-5 = 0 BA Or Trace back from J including arc XY if (Y already lies on the path and) the difference of the final values of X and Y equals the weight of arc XY .	B2, 1, $0 \quad$ (2)
(c)	Shortest route: A - B - F - D - G - E - G - H - J Length: 26 (km)	B1 B1 (2) 10 marks
	Notes for Question 3	
In (a) it is important that all values at each node are checked very carefully - the order of the working values must be correct for the corresponding A mark to be awarded e.g. at \mathbf{C} the working values must be 121110 - in that order (121011 is incorrect). The 20 in brackets in the working values at E is not required but if a candidate does have a value after the $\mathbf{1 6}$ then it must be this value only. This value, if present, must also be in the correct place (after the 16). Penalise any other/incorrect working values with the corresponding A mark. Lastly, it is also important that the order of labelling is checked carefully - some candidates start with a label of 0 at A (rather than 1) - which is fine. Also the order of labelling must be a strictly increasing sequence - so $1,2,3,3,4, \ldots$ will be penalised once (see notes below) but $1,2,3,5,6, \ldots$ is fine. Errors in the final values and working values are penalised before errors in the order of labelling.		

Question

Number
a1M1: A larger value replaced by smaller value at least once in the working values at either C or G or E or J
a1A1: All values in A, B, F, D and C correct. The working values at C must be in the correct order.
Condone lack of 0 in A's working value
a2A1: All values in G and H correct and the working values in the correct order. Penalise order of labelling only once per question (G and H must be labelled in that order and G must be labelled after A, B, F, D and C)
a3A1ft: All values in E and J correct on the follow through and the working values in the correct order.
Penalise order of labelling only once per question (E and J must be labelled in that order and E labelled after all other nodes (excluding J)). Ignore additional working value of 20 at E - so the working values may read 19171620 - rather than 191716 - which is fine - however 20191716 is incorrect and loses this mark

To follow through E check that all the working values at E follow from the candidate's final values from nodes C, D, G and H (in the order that the candidate has labelled these four nodes) and that the final value, and order of labelling, follows through correctly. Repeat this process for J (which will have working values from G and H)
a4A1: CAO for the route (from either A to J or J to A)
a5A1ft: If their answer is not 22 follow through their final value at J (condone lack of units)
For (b) candidates usually give either a general explanation or a demonstration of how they determined their shortest route. If a candidate gives both a general explanation and a demonstration then mark both and award the best mark (but do not mix the two schemes together)

General Explanation:
For the first B mark any indication of 'working backwards' or 'tracing back' through the network - it must be clear from the candidates explanation that they are considering working backwards through the network but give bod for seeing just the phrase 'working backwards' (oe)

For the second B mark we must see

- Working backwards from J
- Including an arc (XY) if the difference of the final values (of X and Y) is equal to the weight (of the arc XY)
Must include all the words in bold (or their equivalent, for example, distance for weight, edge for node,...) - technical language must be correct

Demonstration:

For the first B mark we must see two consecutive correct calculations working backwards from J for their network. They do not have to link the corresponding nodes for this first mark, for example, $22-7=15,15$ $-1=14$ is sufficient for this mark (also note that $22-15=7$, etc. is equivalent). Condone poor notation for this mark, for example, $22-7=15-1=14 \ldots$ is fine for B1

For the second B mark we must see all the correct calculations (so no follow through) from J to A and the linking of all arcs/nodes to these calculations, for example, J: 22-7=15 H, H: 15-1=14 G, etc. is acceptable. All values (including the 22 and 0) and nodes (including J and A) must be present
c1B1: CAO shortest route ($\mathrm{A}-\mathrm{B}-\mathrm{F}-\mathrm{D}-\mathrm{G}-\mathrm{E}-\mathrm{G}-\mathrm{H}-\mathrm{J}$)
c2B1: CAO correct length (26) - condone lack of units

Question Number	Scheme	Marks
4.(a)	e.g. (each arc contributes 1 to the orders of two nodes, and so) the sum of the orders of all the nodes is equal to twice the number of arcs Which implies that the sum of the orders of all the nodes is even and therefore there must be an even (or zero) number of vertices of odd order hence there cannot be an odd number of vertices of odd order.	B1 B1
(b)	(Start at) D and (end at) E (or vice-versa)	B1 (1)
(c)	$\begin{aligned} & \mathrm{A}(\mathrm{C}) \mathrm{B}+\mathrm{D}(\mathrm{BC}) \mathrm{E}=120+300=420 \\ & \mathrm{~A}(\mathrm{CB}) \mathrm{D}+\mathrm{B}(\mathrm{C}) \mathrm{E}=290+130=420 \\ & \mathrm{~A}(\mathrm{C}) \mathrm{E}+\mathrm{BD}=150+170=320^{*} \end{aligned}$ Repeat arcs AC, CE and BD	M1 A1 (2 rows) A1 (3 rows) A1
(d)	Length $2090+320+130=2540$ (m)	M1, A1 (2)
(e)	$\begin{align*} & \text { (Finishing Point is) D } \\ & \text { Difference in routes = } 2540-(2090+130+130)=190(\mathrm{~m}) \tag{3} \end{align*}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1, A1 } \\ & \mathbf{1 2 ~ m a r k s ~} \\ & \hline \end{aligned}$
	Notes for Question 4	

a1B1: Either stating that the sum of the order of the nodes $=\underline{2}$ (number of arcs) or that each arc contributes $\underline{1}$ to the order of two nodes. For this mark there must be a clear correct statement linking the order of nodes to arcs
a2B1: For stating that as the sum (of the orders) of the nodes is even this implies that there must be an even number of nodes of odd order (or there cannot be an odd number of nodes of odd order). Candidates may argue that if the sum (of the order) of the nodes is odd then this implies that the number of arcs cannot be integer valued (oe) which is fine. For this mark there must be a correct statement that the sum of the nodes is even together with the correct conclusion. Note that for the first B mark it must be clear that the candidate is considering the order of the nodes but for the second B mark it is sufficient to for candidates to say 'the sum of the nodes...'. Furthermore, it is possible to score B0B1 (for example, a candidate may simply state the sum of the nodes is even and state the correct conclusion which would score the $2^{\text {nd }} B$ mark only)
b1B1: Correct start and finish points (D, E)
c1M1: Three distinct pairings of the correct four odd nodes
c1A1: Any two rows correct including pairings and totals
c2A1: All three rows correct including pairings and totals
c3A1: CAO correct arcs clearly (not just in their working) stated: AC, CE, BD. Accept ACE or AE via C. Do not accept AE
d1M1: $2090+130+($ their smallest total from (c)); must be at least two distinct pairings of the correct four odd nodes in (c) or for 2410 only (forgetting to add the additional 130)
d1A1: CAO (2540) - if no working seen then the correct answer implies both marks in (d)
e1B1: CAO (D)
e1M1: Their answer to $(d)-(2090+130+$ their BE) (if AB included in (d)) or their answer to (d) - (2090 + their BE) (if AB not included in (d)) or (their smallest total (320) from (c) - their BE (130)) - by 'their BE' this is their smallest pairing which does not include A. This mark is dependent on either scoring the M mark in (c) or considering all three pairings (DE, BE, BD) that do not include A
e1A1: CAO (190) - condone lack of units - if the correct answer is seen with no calculation and/or method seen then award the M mark only. Candidates who did not include AB (130) in their inspection route (in (d)) can still earn full marks in (e) for the correct answer of 190

Question Number	Scheme	Marks
5.(a)	Kruskal: BC, AB, (not AC), DE, CD, DF, (not $\frac{\mathrm{BF}}{\mathrm{CE}}$), EJ, FH, (not HJ), (not BD), GH	M1 A1 A1 (3)
(b)	Prim: GH, FH, DF, DE; CD, BC; AB, EJ	M1; A1; A1
(c)	98 (km)	B1 (1)
(d)(i) (ii) (iii)	$\begin{aligned} & \frac{m}{2} \\ & m-1 \\ & m \geq 2(n-1) \text { (oe) } \end{aligned}$	B1 B1 B1 (3) 10 marks
	Notes for Question 5	

a1M1: Kruskal's - first four arcs BC, AB, DE, CD,...(or weights $6,7,10,11, \ldots$) chosen correctly in order and at least one rejection seen at some point
a1A1: All eight arcs BC, AB, DE, CD, DF, EJ, FH, GH (or weights 6, 7, 10, 11, 13, 15, 16, 20) chosen correctly in order and no additional arcs
a2A1: CSO All selections and rejections correct (in correct order and at the correct time) - do not accept weights only for this mark

- Listing all the arcs in order and then listing those arcs in the tree in the correct order is fine for full marks (this implies that rejections are correct and at the correct time)
- Listing all the arcs in order and just drawing the MST is M0
b1M1: First four arcs correctly chosen in order (GH, FH, DF, DE, ... or weights $20,16,13,10, \ldots$) or first five nodes $\{\mathrm{G}, \mathrm{H}, \mathrm{F}, \mathrm{D}, \mathrm{E}, . .$.$\} correctly chosen in order. If any rejections seen at any point then M1$
(max) only. Order of nodes may be seen at the top of a matrix/table $\{-,-,-, 4,5,3,1,2,-\}$
a1A1: Prim's - first six arcs correctly chosen in order (GH, FH, DF, DE, CD, BC,... or weights 20, 16, 13, $10,11,6, \ldots$) or all nine nodes $\{G, H, F, D, E, C, B, A, J\}$ correctly chosen in order.. Order of nodes may be seen at the top of a matrix so for the first two marks accept $\{8,7,6,4,5,3,1,2,9\}$ (no missing numbers) a2A1: CSO - all arcs correctly stated and chosen in the correct order. They must be considering arcs for this final mark (do not accept a list of the weights of each arc, nodes or numbers across the top of the matrix unless the correct list of arcs (in the correct order) is also seen)
Misread: Starting at a node other than G scores M1 only - must have the first four arcs (or five nodes or numbers) correct (and in the correct order) - condone rejections seen for this mark

Starting at	Minimum arcs required for M1	Nodes	Order
A	AB BC CD DE	ABCDE	$12345----$
B	BC AB CD DE	BCADE	$31245----$
C	CB AB CD DE	CBADE	$32145----$
D	DE CD BC AD	DECBA	$54312----$
E	ED CD BC AD	EDCBA	$54321----$
F	FD DE CD BC	FDECB	$-54231---$
H	HF DF DE CD	HFDEC	$--5342-1-$
J	JE DE CD BC	JEDCB	$-5432---1$

c1B1: CAO (98) - condone lack of units
diB1: CAO (oe e.g. 0.5 m)
diiB1: CAO
diiiB1: CAO (oe, for example, $n-1 \leq \frac{1}{2} m$) - must include correct bracketing (if required) - do not accept strict inequality

Question Number	Scheme	Marks
6.(a)		B1 $(x+y=8)$ B1 $(3 y=9+2 x)$ B1 $(4 y=x)$ B1 $(x=8)-$ must be distinct from the other three lines
(b)	Correct R labelled	B1 (1)
(c)	Objective line drawn $\mathrm{V}\left(\frac{32}{5}, \frac{8}{5}\right)(\mathrm{oe})$	B1 M1 dA1 (3)
(d)	$(C=) \frac{88}{5}$ (oe)	B1 (1)
(e)	$\begin{align*} & (7,7) \\ & 35 \tag{2} \end{align*}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
(f)	$y \leq \frac{5}{3} x \therefore k=\frac{5}{3}(\mathrm{oe})$	M1 A1 (2)
		13 marks
	Notes for Question 6	
The line $x=8$ must be distinct from the other three lines in some way. Some candidates may show the strict inequality as a solid line and the other three lines as dashed lines - this is acceptable for all four marks in part (a). If a candidate has a mixture of dashed and solid lines (say two of each) then withold the final B mark earned a1B1: $x+y=8$ correctly drawn. Must pass within one small square of $(0,8),(4,4)$ and $(8,0)$ a2B1: $3 y=9+2 x$ correctly drawn. Must pass within one small square $(0,3),(6,7)$ and sufficiently long enough to define the feasible region a3B1: $4 y=x$ correctly drawn. Must pass within one small square of the origin and $(8,2)$ a4B1: $x=8$ correctly drawn. Must be sufficiently long enough to define the feasible region. This must be shown as a dashed line or distinctive from the other three lines (see note above)		

Question Number	Scheme	Marks

b1B1: Region, R, correctly labelled - all lines must have been drawn correctly but condone $x=8$ not distinct from the other three lines (so must have scored either B1B1B1B1 or B1B1B1B0 in (a))

Note that if no objective line is drawn then no marks in (c)

c1B1: Drawing a correct objective line - if their line is shorter than the length equivalent to that of the line from $(0,1)$ to $(1.5,0)$ then B 0 . Line must be correct to within one small square if extended from axis to axis c1M1: Candidates must have drawn either the correct objective line or its reciprocal. If they have drawn the correct objective line they must be solving $x+y=8$ and $4 y=x$. If they have drawn the reciprocal objective line line they must be solving $x+y=8$ and $3 y=9+2 x$. Must get to either $x=\ldots$ or $y=\ldots$ (condone one error in the solving of the simultaneous equations). The correct exact answer $\left(\frac{32}{5}, \frac{8}{5}\right)$, or for the reciprocal $(3,5)$, can imply this mark
c1dA1: CAO - the correct exact coordinate $\left(\frac{32}{5}, \frac{8}{5}\right)$ or $(6.4,1.6)$ or $\left(6 \frac{2}{5}, 1 \frac{3}{5}\right)$ - this mark is dependent on the correct objective line seen (so must have scored the B mark). If B1 awarded then the correct answer with no working scores M1A1
d1B1: CAO or 17.6 or $17 \frac{3}{5}$
e1B1: CAO vertex $(7,7)$ (accept $x=7, y=7)$
e2B1: CAO value (35)
f1M1: $(k=) \frac{5}{3}$ or $\frac{3}{5}$ or 1.6 or 0.6 or $1 \frac{2}{3}$
f1A1: CAO $(k=) \frac{5}{3}$ (oe)

a1B1: Any two of the four arcs (E, F, I or the dummy) drawn correctly (from correct vertex to correct vertex) - activities must be labelled with the correct letter (but condone no weights or arrows) and the dummy must be shown as a dashed line (but condone no arrow)
a2B1: All four arcs (E, F, I and the dummy) drawn correctly - must be labelled with the correct letter (but condone no weight or arrows) and the dummy must be shown as a dashed line (but condone no arrow) a3B1: CAO - all three activities (E, F and I) and the one dummy drawn correctly - activities must be labelled with the correct letter and the activities and dummy must have the correct arrows (do check carefully that all arrows are present) but condone lack of (or incorrect) weights on the activity arcs

In (b) the M marks are dependent on scoring at least the first mark in (a)
In (b) the A marks are dependent on scoring at least the first two marks in (a)
b1M1: All top boxes complete (condone lack of 0 for the M mark only), values generally increasing in the direction of the arrows ('left to right'), condone one 'rogue' value (if values do not increase in the direction of the arrows then if one value is ignored and the remaining values do increase in the direction of the arrows then this is considered to be a single rogue value). Note that all values in the top boxes could be incorrect but it can still score the M mark if the values are increasing in the way stated above - this mark is dependent on the first mark having being awarded in (a)

Num		
b1A1: CAO - all values correct in the top boxes - this mark is dependent on the first two marks having being awarded in (a) b2M1: All bottom boxes complete (condone lack of 39 and/or 0 for the M mark only), values generally decreasing in the opposite direction of the arrows ('right to left'), condone one 'rogue' - this mark is dependent on the first mark having being awarded in (a) b2A1: CAO - all values correct in the bottom boxes - this mark is dependent on the first two marks having being awarded in (a) c1M1: Attempt to find lower bound: (a value in the interval [80-104] / their finish time) or (sum of the activities / their finish time) or (as a minimum) an awrt 2.4 c1A1: CSO - either a correct calculation seen or awrt 2.4 then 3 . An answer of 3 with no working scores M0A0 d1M1: Not a cascade (Gantt) chart. 4 'workers' used at most and at least 8 activities placed d1A1: The critical (C, H, J, L) activities and A, B and D correct. A must be completed by its late finish time (22), B must be completed by its late finish time (13) and D must start after A and finish before its late finish time (32)		

Activity	Duration	Time interval	IPA
C	8	$0-8$	-
H	9	$8-17$	C
J	12	$17-29$	H
L	10	$29-39$	J
A	5	$0-22$	-
B	7	$0-13$	-
D	5	$5-32$	A

Now check the last 5 activities - the last two marks are for E, F, G, I and K only
First check that there are only three workers and that all 12 activities are present (just once)
Then check precedences (see table below) - each row of the table could give rise to 1 error only in precedences

Finally check the length of each activity and the time interval in which the activity must take place (interval is inclusive)

Activity	Duration	Time interval	IPA
E	7	$5-29$	A
F	10	$8-29$	B, C
G	4	$8-17$	B, C
I	8	$17-29$	G, H
K	7	$10-39$	D

d2A1: 3 workers. All 12 activities present (just once). Condone one error either precedence or time interval or activity length, on activities E, F, G, I and K only (note: one activity could have more than one error, for example, activity G could have an error in duration and an error in IPA - this is two errors not one) d3A1: 3 workers. All 12 activities present (just once). No errors on activities E, F, G, I and K

[^0]: $\mathrm{ft}=$ follow through mark

[^1]: